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1. Introduction 
Climate Value-at-Risk (Climate VaR) provides a forward-looking and return-based valuation 
assessment to measure climate-related risks and opportunities. Climate VaR is a quantitative 
assessment calculated at the company and security level. The aggregated company Climate VaR is 
calculated as a percentage of market value (from -100% to +100%) for multiple climate scenarios 
and includes the valuation impacts arising from technology opportunities, policy risks and physical 
risks.  

The Climate VaR model uses a data-driven approach, examining a company’s positioning within its 
industry and the regions where it operates. It considers the potential costs and profits associated 
with different climate scenarios, including the impacts of carbon pricing, regulatory changes, and 
physical climate events. By simulating these scenarios, the model estimates how climate change 
could affect a company’s financial performance and overall valuation. 

Exhibit 1: Pillars of the Climate VaR model  

 
Source: MSCI ESG Research, as of June 2024 

 

Exhibit 1 provides the Climate VaR framework. Climate VaR is composed of the following pillars:  

• Policy risk 

• Technology opportunities 

• Physical risk and opportunities 

These pillars are further broken down into the categories listed in Exhibit 1. Cost estimates are made 
for each pillar under multiple climate scenarios from the Network for Greening the Financial System 
(NGFS) and Intergovernmental Panel on Climate Change (IPCC). This enables the understanding of 
climate risk exposure for individual drivers and in aggregate within a consistent and holistic 
framework. 

2. Interpretation of Climate VaR  
The Climate Value-at-Risk output is a measure of both a company’s potential climate cost exposure 
and a measure of how climate change may affect a company valuation. This is outlined in the broad 
calculation steps of the Climate VaR output.    
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The Climate VaR model estimates annual net climate costs1 for a company for each scenario and 
pillar. Climate costs/profits for each pillar are determined separately, allowing for an understanding 
of the component climate risks and opportunities driving the aggregated result. The high-level steps 
of the Climate VaR modelling process are as follows: 

Step 1: Estimate a time series of forecasted undiscounted net climate costs for a company.  

These time series are the most fundamental output of the Climate VaR framework, enabling the 
assessment of net climate cost exposure of individual companies over time.    

Step 2: Calculate the sum of the present value of future net climate costs.   

The time series of future net climate costs are discounted back to their present value and then 
summed.  This total represents an estimate of the net climate cost exposure of the company, taking 
into account the time value of money when assessing costs incurred at different horizons. 

Step 3: Revalue the company accounting for the summed present value of future net climate costs. 

The company’s current valuation (enterprise value including cash or EVIC) reflects current 
expectations of the discounted sum of its future free cash flows.  To understand how new net 
climate costs may affect this valuation, the present value of these new costs is subtracted from its 
current valuation. Company Climate VaR output for each scenario and pillar is the percentage 
devaluation (or appreciation) of the company after these net costs (or net profits) have been 
accounted for. 

The Climate VaR model also provides an output for company equity, company debt, and at the 
individual bond security level. The split of climate costs between equity and debt holders is based on 
the assumption that debt holders are only affected by a cost shock to the extent that it increases 
company default risk. This results in Equity Climate VaR always being equal to or greater in 
magnitude than Debt Climate VaR. For a company with a high credit worthiness, a relatively large 
climate cost exposure (and thus a relatively large company Climate VaR) is often accompanied by 
low debt Climate VaR. The Climate VaR model employs a Merton-type credit model to calculate 
effects on default risk and thus allocate costs to company equity, company debt, and specific 
company bond securities.    

Key assumptions 

Climate VaR output relies on the following key assumptions: 

• Current company valuations do not reflect any future climate costs.  

• The adjusted valuation reflects the “pricing in” of all future climate costs from a given scenario.   

These assumptions are extreme in that they result in the maximum devaluation possible for the 
company given estimated climate costs.2 

Due to these assumptions, Climate VaR values are not a return forecast for a specific horizon.  It is 
possible and even likely that current valuations reflect some future climate costs, or that scenario-
specific future climate costs will not be fully priced in a specific time period.  

 
1 The output of the transition opportunities pillar are profits, not costs.  If these opportunities exceed all other climate costs, sum of 
all pillars will be net profits (negative net costs).  We refer to all time series here as net costs for ease of exposition.    

2  If the present value of climate profits exceeds climate costs, Climate VaR output instead reflects the maximum appreciation of the 
firm due to climate costs. 
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Climate VaR is equal to the present value of climate costs as a percentage of the company’s current 
valuation, and thus provides a single number reflecting the climate cost exposure of different 
companies relative to their scale.  Under many reasonable relaxations of the pricing assumptions 
above, Climate VaR output will still reflect relative valuation shocks across companies.3 

3. Climate Value-at-Risk cost and profit estimation 
The three major pillars of the Climate VaR model, and their underlying categories, are shown in 
Exhibit 1. 

Transition risks and opportunities  

• Policy risks: This encompasses costs due to regulatory and governmental factors. 

• Technology opportunities: This focuses on business opportunities emerging from innovative 
clean technology products.  

For the policy pillar, costs from direct Scope 1 emissions reduction are calculated by translating 
NGFS-provided regional and sectoral carbon reduction requirements into firm-level reduction paths; 
these firm reduction requirements are then multiplied by the scenario’s carbon price4 forecast to 
estimate total reduction costs incurred by a company. The costs of higher electricity prices and 
shocks to a company’s value chain are also forecasted, with the key drivers of these costs being 
carbon price forecasts and the firm’s Scope 2 and 3 emissions intensities. Indirect costs from Scope 
3 emissions, which measure additional transition effects occurring along a company's value chain, 
are also accounted for. This includes upstream Scope 3 costs, which refer to the rise in input costs 
due to climate regulation (excluding electricity cost effects mentioned above), and downstream 
Scope 3 costs, which pertain to changes in product demand resulting from shifting consumer 
behavior and competitive transitions in downstream markets. 

Potentially counterbalancing these new costs are technology opportunities: the technology pillar 
forecasts firm profits from new revenue streams arising from the development of new technologies 
serving the transition to a low-carbon economy. Total green revenues by sector are sized, then 
allocated to firms through forecasts of each firm’s future market shares. Market share forecasts are 
derived from each firm’s current green market share and low carbon technology patent share (as a 
measure of how market shares may change over time). 

Physical Risk and Opportunity 

• Chronic hazards: These risks manifest slowly over time and may cause business interruptions. 
MSCI ESG Research considers the various effects of business interruption for five chronic 
hazards: extreme heat, extreme cold, heavy precipitation, strong snowfall, and severe wind 
conditions. 

 
3 Such assumptions include climate costs being partially priced into current valuations and partially priced in further after a shock.  
For contingencies where future climate costs may only be priced to a short-term horizon, Climate VaR contains a Multihorizon CVaR 
module which varies the horizon to which the present value of climate costs are calculated.  This can also be interpreted as a 
company’s climate cost exposure up to a specific horizon.  

4 NGFS scenarios output carbon emissions prices, which can be interpreted as “a proxy for government policy intensity and changes 
in technology and consumer preferences”, and not necessarily just a simple carbon tax.  For more details, see the publication “NGFS 
Scenarios for central banks and supervisors”, Network for Greening the Financial System, September 2022. 
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• Acute hazards: These risks occur from rare natural catastrophes, such as tropical cyclones, in 
distinct time intervals. Depending on the hazard type, they may cause business interruption as 
well as asset damage. MSCI ESG Research considers effects for six acute hazards: tropical 
cyclones, coastal flooding, fluvial flooding, pluvial flooding, river low flow, and wildfires.  

Cash flow estimation begins with MSCI ESG Research's physical hazard models, which project 
changes in the intensity and frequency of various hazards in specific locations as the scenarios 
suggest the climate will evolve. These models overlay a firm's physical asset locations and business 
activity to estimate company assets exposure to specific hazards. Then, damage functions are 
applied to translate hazard exposures into anticipated physical asset damages and business 
interruption costs. All physical risk modeling offers global coverage and relies on MSCI ESG 
Research's Asset Location Database (ALD).5  

4. Coverage and update processes 

4.1 Coverage universe 
As of June 2024, the coverage universe includes targeted and tracked indexes – including MSCI 
ACWI Investable Markets Index (IMI). The Bloomberg Global Aggregate Index is a targeted index for 
corporate fixed income coverage.  

The entity for which data is collected for fixed income issuers may be a different legal entity from 
the one issuing the bond, in which case MSCI ESG Research’s data mapping process is used to map 
the evaluation to the entity. 

4.1.1   Minimum data requirements 

MSCI ESG Research minimum data availability requirements must be met for inclusion in the 
coverage universe. For Climate VaR modeling, essential data include the company’s market 
capitalization, total debt, and Weighted Average Cost of Capital (WACC). Additionally, each Climate 
VaR subcomponent requires specific input data to ensure coverage and accurately assess a 
company's risk profile. For Policy Risk Climate VaR, essential data include revenue and Scope 1 and 
3 emissions. When companies do not disclose emissions data, MSCI ESG Research uses proprietary 
methodologies to estimate carbon emissions based on a company’s revenue. For Technology 
Opportunities Climate VaR, clean technology revenue or low-carbon patent data are needed. For 
Physical Risk Climate VaR, information about the company's asset characteristics is needed, 
including the geolocations of the assets, their sizes, and business activities. While Policy Risk and 
Physical Risk Climate VaR are essential for inclusion in the coverage universe, a company can still 
be considered covered without a Technology Opportunities Climate VaR. In such cases, the 
aggregated Climate VaR comprises only the sum of the Policy Risk and Physical Risk Climate VaR. 

4.1.2   Entity selection & data mapping 

ESG Evaluations, including company-level Climate VaR evaluations, may be attributed to related 
companies. Companies are selected for ESG Evaluations through MSCI ESG Research’s Entity 
Selection process – these are known as Data Entities. To determine which entity or entities within a 
group of related companies should be evaluated, MSCI ESG Research conducts a review of the 

 
5 Not all assets and companies in the ALD are covered by the physical risk models, as the physical risk models require company 
level information regarding at least revenue, market cap, and WACC to calculate physical CVaR. 
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companies’ financing structures. Then, ESG Evaluations are attributed to related companies through 
MSCI ESG Research’s Data Mapping process. 

Data Mapping is the process whereby ESG Evaluations for a company (a Data Entity) are attributed 
to related companies. ESG Evaluations are mapped based on observed parent-subsidiary 
relationships, subject to certain company and data point requirements. 

• Certain companies (such as those classified as financing companies) included in the coverage 
universe may be covered by data mapping from the relevant Data Entity. 

• Bond issuers outside the company-level Climate VaR coverage universe may also have their 
evaluations mapped from parent entities that are included in the company-level Climate VaR 
coverage universe. 

Note that company-level Climate VaR evaluations are not mapped to: 

• Equity issuers; or 

• Companies that have already been assessed by MSCI ESG Research.  

4.2 Model input data sources 
Below is an overview of the data sources used as inputs into the Climate VaR model. 

 
• Scenario data: Integrated Assessment Models (IAMs) from sources such as the NGFS provide 

future transition pathways for assessing economic and environmental impacts of climate 
change, including carbon emissions pathways, global temperature projections, energy efficiency 
factors, and policy-related outputs like carbon pricing and mandated emissions reductions. 

• Financial data: Financial data used in Climate VaR modeling is sourced from Refinitiv and 
company reporting.  

• Emissions data: MSCI ESG Research collects greenhouse gas emissions data annually from 
companies in coverage, using sources like annual reports, CSR reports, company websites, 
Carbon Disclosure Project (CDP), and government databases. When direct disclosure is 
unavailable, MSCI ESG Research estimates Scope 1, Scope 2 and Scope 3 emissions using 
proprietary methodologies. 

• Energy usage: MSCI ESG Research collects energy consumption data from CDP for companies 
that report these values. When company disclosure is unavailable, MSCI ESG Research uses an 
electricity estimation model. 

• Patent data: MSCI ESG Research’s technology opportunities covers patents that have been 
granted from over 70 patent authorities worldwide. The source for this patent data is LexisNexis 
IPlytics.  

• Hazard data: Hazard data is based on observations and reanalysis data as well as on projections 
from general circulation models and global hydrological models from academic and think tank 
research organizations. All models are onboarded following MSCI ESG Research’s vendor due 
diligence process. In all cases, the climate data are post-processed to derive hazard specific 
indicators. Post-processing includes  steps such as bias-adjustment of climate projections and 
overlaying extreme sea level data with a digital elevation model to derive coastal flood 
inundation depths. 
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• Vulnerability data: Vulnerability factors and damage functions are obtained from various data 
sources, including historical disaster databases, such as EM-DAT6 for tropical cyclones, the 
Munich Re database7 for recorded wildfires, the European Drought Impact Report Inventory8 
(EDII)  for river low flow events, and peer-reviewed scientific publications.9 

• Exposure data: Relevant information about company asset characteristics such as location, size, 
or business activity are provided by the MSCI ESG Research’s ALD. Asset value and revenue are 
estimated from the company’s fixed asset values and total revenue using a disaggregation 
algorithm.10 

4.3 MSCI ESG Research methodology governance 
The ESG Methodology Committee (EMC) presides over the development, review and approval of all 
MSCI ESG Research methodologies, including Climate VaR. 

MSCI ESG Research may update  methodologies and models, including Climate VaR. Methodology 
update proposals may be  subject to market consultation prior to approval for implementation by the 
EMC. 

4.4 Data quality assurance (QA) 
MSCI ESG Research considers a broad range of criteria when assessing the quality of input data 
used in ESG and Climate models. These criteria include completeness, exhaustivity, timeliness, 
accuracy, and traceability back to sources. The QA processes are designed in an additive setup, 
consisting multiple layers of automated validation and manual check points. 

4.5 Model production cycle 
MSCI ESG Research’s Climate Risk Center has a quarterly model production cycle where significant 
code changes to its models, including Climate VaR are introduced, after the methodological changes 
have been vetted and approved by the EMC. These changes require an extensive and structured QA 
process that covers both the input data and the generated output data, to assure correctness of the 
models and their produced data.  

All data auditing processes entail quarter-to-quarter statistical comparison of data to identify any 
possible outliers in the data sets. In case of any anomaly detection or abnormal changes, the issue 
is flagged and sent back to source for further evaluation and validation. Any model maintenance, 
methodology updates, and all statistically significant changes are disclosed to clients through 
quarterly release notes following high-level supervisory checks. 

  

 
6 EM-DAT (2008), ‘EM-DAT: The International Disaster Database’, Available at: https://www.emdat.be/, Last accessed June 13, 2024. 

7 Munich Re is a German reinsurance and insurance company covering and reporting on damages from a wide range of physical 
risks, among other risks. 

8 European Drought Centre 2015. “European Drought Impact Report Inventory (EDII) and European Drought Reference (EDR) 
database” 

9 For example, flood depth damage functions provided in Huizinga, J., Moel, H. de, Szewczyk, W. Global flood depth-damage 
functions. Methodology and the database with guidelines. 2017. EUR 28552 EN. doi: 10.2760/16510. 

10 More details can be found in the methodology document “Exposure Estimation for Physical Risk Models”. 

https://www.emdat.be/
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Carbon Delta estimates the effect of climate 
change on a company’s bottom line

2

California –

Clean Energy and 

Pollution Act – 50% 

Renewables by 2030

Sunrun (Solar Installer): 

1000% revenue growth

RWE (German Utility):

Analyst-Revision -22.6%

TECH OPPORTUNITIES

2015 South Indian 

floods

Ford Motor Co., BMW AG and

Renault SA halted production

at their factories

TVS Motor Co.’s stock price

dropped 4.9 per cent, saying

rainfall adversely affected

production and sales.

PHYSICAL RISKSPOLICY RISKS

2019 South Africa 

Carbon Tax

Minerals Council SA says the 

carbon tax could wipe out 6,000+ 

mining jobs each year

Eskom’s carbon tax 

liability is projected to be 

approximately R11.5 billion 

per year from 2023



The climate innovation

Scenario analysis

1.5°C-Scenario Average Scenario

2˚C Scenarios (7)

• 3 Integrated Assessment Models

• 5 Socioeconomic Pathways

3°C-Scenario / NDC Worst Case Scenario

Transition Risks & Opportunities Physical Risks & Opportunities



What is Climate Value at Risk (CVaR)?

4

Climate VaR aims to assess the potential 

financial sensitivity to climate risks and 

opportunities, i.e. what would be the potential 

financial impact of different climate scenarios 

(1.5°, 2°, 3° of warming)?

Estimates of net-present-value impact of 

climate change on the security pricing 

An aggregate Climate VaR can be broken down 

into:

• Policy (transition risks)

• Technology opportunities 

(transition opportunities)

• Physical risks & opportunities

Asset classes covered: listed equities, fixed 

income, real estate assets

Aggregated Climate VaR

Source: Carbon Delta company report



Climate Value-at-Risk building blocks & risk metrics
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POLICY
15 years until 2100

+

Emission Reduction 

Requirements per 

year

Costs to comply with 

emission reduction 

targets

TECHNOLOGY
15 years until 2100

Patents deliver deep

insights into R&D 

investments

90 million patents

10’000+ companies

> 400 groups of low

carbon technologies

PHYSICAL
15 years until 2100

Extreme Heat

Extreme Cold

Heavy Precipitation

Heavy Snowfall

Wind Gusts  

Coastal Flooding

Tropical Cyclones

Aggregated 

Climate VaR

Physical Risks & OpportunitiesTransition Risks & Opportunities

+ =



How is Carbon Delta's CVaR calculated?

CLIMATE-STRESSED ASSET VALUATION



Nationally Determined Contributions (NDCs)

Pathway to Canada’s 2030 target

Source: Canada’s NDC, Page 4 7



Overview of Policy Risk Methodology

facilities
x  PRICE

EMISSION 

SECTORS

facilities

facilities

facilities

ASSET LEVEL 

DATABASE

x  PRICE

x  PRICE

x  PRICE
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Aggregation Across Company Facilities
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Calculate Cost Impact with Carbon Prices
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$ / tCO2



Company-level Scenario Analysis

Greenhouse

Gas Level: 

34.1 MtCO2e

Emission trajectories for emission scenarios

On a company level, 

we calculate:

Current emission level

Annual emission levels 

15 years into the future

Emission reduction 

requirements per year

Costs to comply with 

emission reduction 

targets each year under 

BAU, 3C, 2C and 1.5C 

scenarios

40

30

20

10

2020 2025 2030

Business 

As Usual

3ºC – NDCs

2ºC

1.5ºC

-140 mUSD/yr

-551mUSD/yr

-2.0 bUSD/yr
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Tech Opportunity: Sector Breakdown of Patents

0 1 2 3 4 5 6 7

Waste

Health Care Equipment

Smart Grids

Combustion

Biofuels

Energy Supply

CCS

Photovoltaic

Wind

E-Vehicles

Weight x Patent Value

Other Patents

Low Carbon
Patents
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Overview of Physical Risk Methodology

VULNERABILITY Cost function

EXPOSURE Company facility

HAZARD Extreme weather

EXPECTED COST = VULNERABILITY  × HAZARD × EXPOSURE
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Hazard: Extreme Weather Types

Extreme 

heat and 

cold

Re-analysis

Heavy 

precipitation 

and snowfall

Re-analysis

Wind gusts

Re-analysis

Wildfires

Re-analysis, 

development 

in progress

Coastal

flooding

Climate models

Tropical

cyclones

Probabilistic model –

Climada

Fluvial 

flooding

Climate models, 

development 

in progress

14



Exposure: Asset Level Database

Asset location 

database with 

global coverage

Growing number of 

enterprise assets 

(>500k assets)

Data is obtained 

from

• Company analysis

• Crawling data

• Industry databases

Example: European locations within MSCI ACWI and exposure to coastal flooding
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Use cases

16

Regulatory 

Compliance

Risk 

Management

2ºC

Alignment

New Financial 

Products

Shareholder 

engagement

CSR and 

TCFD reporting

Green Technology 

Opportunities

for Alpha Creation

Sectoral & 

regional over- and 

underweights



Carbon Delta’s existing clients

17

Carbon Delta has worked with the below organizations to 

measure and manage climate risk



Which industries are most affected by climate 
risks?
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Optimize the 

Climate VaR

of a portfolio

CVaR spread by primary sectors of activity



Climate Risk Contribution
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Transition risks Physical risks

Portfolio CVaR contribution by security



How aligned is a sample portfolio with the 
Paris Climate Target?
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Portfolio 

Warming Potential
Top 5 High-Warming Potential Securities

Top 5 Low-Warming Potential Securities
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Measuring climate-related and environmental risks for equities
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A B S T R A C T

Financial regulators and investors are increasingly concerned about the effects of climate change on investments 
and seek to capture the climate-related and environmental risks of investments. Whilst energy companies have 
attracted most of the attention due to the contribution of the Energy sector to environmental degradation, 
climate-related and environmental risks actually affect companies in every sector. In this paper, we propose 
novel measures termed as climate Value-at-Risk (VaR) and climate Expected Shortfall (ES) that capture the risk 
attributed to transition risk factors proxied by environmental scores. We compare the average ratio of climate 
VaR and ES to total risk in various equity sectors, which enables us to identify the sectors in which climate and 
environmental risk factors contribute most to the total risk. Our analysis considers different risk measurements 
and various significance levels. Our findings show heterogeneity in sensitivity to climate and environmental risk 
factors in various sectors. The Health Care sector is the least cost-effective in reducing climate-related and 
environmental risks, and the Energy sector benefits most from improving the firms’ environmental scores.

1. Introduction

As one of the most critical global challenges on this planet, climate 
change potentially impacts every individual, with health and social 
implications, but also affecting the economy and the financial system. 
Fossil fuels are a crucial input to production, and economic growth in-
creases greenhouse gas emissions. The climate change attributes to those 
emissions and the literature shows that climate change has become a 
prominent risk that will potentially create substantial costs to the 
economy (Burke et al., 2015; Dietz et al., 2016; Lesk et al., 2016). 
Nonetheless, if the economic effects of climate change are as large as 
some studies have suggested, then, given that financial assets are ulti-
mately supported by economic activities, the impact of climate change 
on financial assets could also be substantial.

Research on the interaction between climate change and financial 
economics is termed climate finance (Giglio et al., 2021). In this field, 
one of the important topics at the moment is to understand the effect of 
climate on various financial indicators. As highlighted by the Bank of 
England (2021), there is a research gap in incorporating climate risks 
into capital requirements. Additionally, the Basel Committee on Banking 
Supervision (2021) explores how climate-related risk factors arise and 
impact portfolios as well as levels of risk, providing the theoretical 
background on climate-related risk drivers and their transmission 

channels. From an EU perspective, the European Central Bank (2020)
expects the financial institutions to continuously monitor the effects of 
climate-related and environmental risk factors on their holdings and 
future investments. To act on that, the European Central Bank (2022)
put forward a framework for annual climate risk stress test. To address 
the research gap and meet regulatory demands, our study contributes to 
the climate finance literature that investigates the impact of 
climate-related and environmental risks on financial markets and firms.

We introduce new measures of climate-related and environmental 
risks, specifically climate Value-at-Risk and climate Expected Shortfall 
which capture the risk in equities that stems from climate-related and 
environmental risk factors proxied by environmental scores. Also, we 
compare the average ratios of climate Value-at-Risk and climate Ex-
pected Shortfall to total risk in several equity sectors, and we identify the 
sectors in which climate-related and environmental risk factors 
contribute most to total risk.

In this study, we use the terminology “climate-related and environ-
mental risks” following European Central Bank (2020) and Network for 
Greening the Financial System (2020, 2023) to capture the impact from 
climate change and environmental degradation in companies, and 
perform a comparative analysis of the various industry sectors. 
Climate-related and environmental impact has two main drivers, phys-
ical risk and transition risk. The former refers to the mainly negative 
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impact of climate and weather-related events on business operations, 
society, and supply chains (Tankov and Tantet, 2019). There are two 
sub-categories within the class of physical risks: acute risk and chronic 
risk. Extreme weather events including extreme drought and 

precipitation, floods, hurricanes, heatwaves, and wildfires are defined as 
acute risks. Chronic risks are generally considered to include: rising sea 
levels, rising average temperatures, and ocean acidification. The latter 
refers to the risk associated with a path to a low carbon economy and all 

Table 1 
Summary statistics.

Sector Return (%) Environment Emission Innovation Resource Size M/B* ROE* Leverage* Investment NumComp

Basic Materials 1.061 42.591 41.739 44.426 44.950 7.837 2.652 0.029 1.423 4.231 62
Consumer Discretionary 1.107 49.103 44.379 45.990 50.110 8.609 4.608 0.050 1.531 4.671 125
Consumer Staples 0.972 48.954 43.753 45.655 53.314 8.873 7.192 0.068 1.690 4.608 61
Energy 0.989 63.171 57.855 53.369 56.901 8.761 1.126 0.001 0.558 5.472 28
Financials 1.403 53.045 52.106 41.627 49.021 9.298 5.905 0.066 1.444 2.895 65
Health Care 1.620 56.791 56.961 46.748 63.459 9.624 7.770 0.020 0.740 4.523 31
Industrials 1.238 43.642 38.535 45.510 42.599 8.258 5.316 0.054 1.764 3.942 188
Real Estate 1.018 51.928 53.844 43.738 51.257 8.467 2.497 0.019 1.374 0.738 74
Technology 2.089 52.050 52.124 52.157 54.933 9.008 4.670 0.032 0.446 4.200 88
Telecommunications 0.617 46.841 48.230 46.677 53.289 8.947 2.424 0.011 1.174 4.968 22
Utilities 1.200 49.931 56.083 44.952 49.158 8.827 2.015 0.025 1.263 6.038 58

Note: This table reports averages (for monthly frequency) of the variables employed in the regressions in this study reported for 11 different sectors listed in the first 
column. The sample period is from January 2003 to December 2019. Return represents average monthly return of the sector (in percentages). Emission, Innovation, and 
Resource indicate, respectively, the Emission score, Innovation score, and Resource Use score. Size is the natural logarithm of market capitalization in $ million. M/B 
denotes the market value of equity divided by its book value. ROE is the return on equity. Leverage is the total debt (long-term and short-term) divided by the total 
stockholders’ equity. Investment is the natural logarithm of the capital expenditures in $ million. NumComp represents the number of companies in the sector. Variables 
followed by * are winsorized at 1%.

Table 2 
Panel regression results for returns and environmental scores at various quantiles.

Quantiles
Variable 1% 5% 10% 30% 50% 70% 90% 95% 99%

Environment − 0.057*** − 0.032*** − 0.021*** − 0.008*** − 0.003** 0.004* 0.013** 0.015 0.021
(0.011) (0.006) (0.005) (0.002) (0.001) (0.002) (0.006) (0.010) (0.018)

Size 3.575*** 2.437*** 1.794*** 0.773*** 0.263*** − 0.249*** − 1.288*** − 2.077*** − 4.225***
(0.268) (0.181) (0.128) (0.057) (0.029) (0.053) (0.156) (0.223) (0.382)

M/B 0.027*** 0.010 0.001 0.002 0.000 0.000 − 0.002 − 0.001 − 0.003
(0.007) (0.006) (0.006) (0.003) (0.003) (0.002) (0.002) (0.003) (0.015)

ROE − 0.979** − 0.725 − 0.037 − 0.180 0.034 0.023 0.081 − 0.046 − 0.606
(0.420) (0.584) (0.375) (0.226) (0.188) (0.165) (0.132) (0.236) (0.514)

Leverage − 0.230** − 0.010 0.001 − 0.001 − 0.001 0.000 0.010 0.008 0.289*
(0.101) (0.028) (0.013) (0.008) (0.005) (0.003) (0.013) (0.034) (0.168)

Investment − 0.686*** − 0.492*** − 0.395*** − 0.250*** − 0.186*** − 0.119*** 0.024 0.157 0.379**
(0.144) (0.112) (0.098) (0.047) (0.030) (0.031) (0.076) (0.100) (0.193)

Note: This table presents the results of the quantile regression with penalized sector fixed effects for the panel data of returns and environmental pillar under the 
Refinitiv ESG scores during the sample period from January 2003 to December 2019. The quantiles considered are 1%, 5%, 10%, 30%, 50%, 70%, 90%, 95%, and 99%. 
All control variables are lagged by one month. The standard errors are reported in parenthesis, *, **, and *** denote statistical significance at 10%, 5%, and 1% levels, 
respectively.

Fig. 1. Effect of the environmental pillar under Refinitiv ESG scores on returns at different quantiles.

E. Lazar et al.                                                                                                                                                                                                                                   Journal of Environmental Management 373 (2025) 123393 

2 



related implications of fossil fuels and dependent sectors (Curtin et al., 
2019).1

Climate-related and environmental risks are growing concern for the 
financial sector, and they are affecting the prices of various assets, 
including stocks, bonds, real estate, and more (see Bernstein et al., 2019; 
Goldsmith-Pinkham et al., 2019; Hong et al., 2019; Baldauf et al., 2020; 
Painter, 2020; Bolton and Kacperczyk, 2021; Giglio et al., 2021). Also, 
they are long-term risks that pose significant challenges to investors, as 
it is often not effectively priced in financial markets (Andersson et al., 
2016; Bansal et al., 2016). To mitigate these risks, investors need to 
consider the potential impact of climate change on the returns of assets. 
The implementation of carbon pricing can play an important role in 
reducing CO2 emissions (Best et al., 2020), but it is also important to 
consider other factors, such as firm-level risk exposure to climate 
regulation (Seltzer et al., 2022), to climate change news shocks (Ardia 
et al., 2023), to the attention paid by market participants in earnings 
calls related to a firm’s climate risks (Sautner et al., 2023), and the ef-
fects of weather conditions with abnormal temperatures 
(Anttila-Hughes, 2016; Kumar et al., 2019; Choi et al., 2020). On the one 
hand, companies with high carbon emissions are more likely to be 
exposed to climate-related and environmental risks, and their stock 
prices may be more likely to be affected by climate-related factors 
(Bolton and Kacperczyk, 2021). On the other hand, companies with 
higher environmental scores on ESG scores are likely to perform better 
when climate-related events occur (Engle et al., 2020; Huynh and Xia, 
2021). Furthermore, climate policy uncertainty is reflected in the option 
price and can influence the social cost of carbon, as well as affecting the 
stock prices of firms with high exposure to climate policy (Barnett, 2023; 
Barnett et al., 2020; Ilhan et al., 2021). The hot debate of the climate 
change also arises the concerns of the impact of climate change on the 
financial risk management. Dietz et al. (2016) propose a climate risk 
measure by taking into account effects of climate damages on the pre-
sent value of global assets. Acharya et al. (2023) provide a climate risk 
measure exploring a climate stress testing characterization of risk for 
financial firms and banks.

Risk measures such as Value-at-Risk (VaR) and Expected Shortfall 
(ES) have been widely used in academics and practice. VaR is one of the 
most popular tail risk measures that is employed to assess and manage 
financial risk. VaR is an estimate of the quantile of the distribution of 
profit and losses, and it can be measured at different levels. Due to its 

conceptual simplicity, VaR has become a popular risk measure of market 
risk and is frequently investigated (see Duffie and Pan, 1997; Dowd, 
1998; Jorion, 2000; Dempster, 2002; Allen, 2012). However, since VaR 
ignores the shape and structure of the tail of the returns’ distribution and 
is not a coherent risk measure (i.e. it is not subadditive), ES, as an 
alternative, has been proposed (Artzner, 1997; Artzner et al., 1999). It 
measures the expected value of the observations provided that they 
exceed VaR and is a coherent risk measure (Roccioletti, 2015). Due to its 
favourable properties, ES has consistently increased in popularity (see e. 
g. Chen et al., 2012; Patton et al., 2019; Taylor, 2019; Gerlach and 
Wang, 2020). However, the measurement of ES is inherently dependent 
on the value of the VaR estimate. As such, ES is not elicitable by itself, 
and only the (VaR, ES) tuple is elicitable (Ziegel, 2016). There is no 
doubt that in recent years climate-related and environmental risks have 
become some of the most important components of total financial risks, 
as highlighted by the European Central Bank (2020) and the Network for 
Greening the Financial System (2020, 2023). One important question 
that arises is to what extent climate-related and environmental risks 
contribute to the total financial risks, and this is the central research 
question we address here. Additionally, it has been well documented 
that different sectors have heterogeneity in the climate and 
environmental-factors (e.g. Giese et al., 2021). Thus, we extend our 
analysis by investigating the relationship between market risks and 
climate-related and environmental risk factors in various sectors.

This paper makes three main contributions. First, we pioneer in 
investigating the relationship between stock returns and transition 
climate-related and environmental risk factors in different return 
quantiles. The existing literature focuses on the link between environ-
mental risk factors and the stock returns in the mean (Giese et al., 2019; 
Cornell, 2021; Luo, 2022), without paying attention to possible varia-
tions in the different quantiles of the stock returns. Based on firm-level 
environmental scores constructed by the ESG (“Environmental, Social, 
and Governance”) scores data provided by Refinitiv to proxy the firms’ 
climate-related and environmental risk exposure, we find a significant 
negative relationship between them in the lower quantiles of stock 
returns, implying that companies that face financial difficulties are 
affected negatively by the costs of improvements made to their envi-
ronmental scores.

Our second contribution is to propose novel measures (climate VaR 
and climate ES) that capture the market risk attributed to climate- 
related and environmental risk factors proxied by environmental 
scores. Some institutions have proposed risk measures that they labelled 
“Climate Value-at-Risk” (e.g. MSCI, 2020). However, there is no publicly 
available documentation on how their measure is computed.2 In addi-
tion, we introduce climate risk ratios for VaR and ES, which show the 
proportion of market risk which is due to climate-related and environ-
mental risk factors. These novel measures can be useful tools for other 
researchers, investors and policymakers.

Our third contribution is to highlight how companies in various 
sectors respond to climate-related and environmental risks. As far as we 
know, there is no literature on sectoral analysis for climate VaR/ES. Our 
results indicate the heterogeneity in the sensitivity of different sectors to 
climate-related and environmental risk variables. In particular, com-
panies in the Energy sector gain the most from improving environmental 
scores, whereas companies in the Health Care sector are the least cost- 
effective in decreasing their climate-related and environmental risk. 
Our results are robust to changes to the models used to capture risk and 
to the levels of risk significance.

The rest of the paper is organized as follows. Section 2 discusses the 
methodology to estimate the climate-related and environmental risk 

Table 3 
Summary statistics for VaR and ES estimates at 1% level.

Sector VaR ES Climate VaR Climate ES

Basic Materials − 27.998 − 37.971 0.377 0.577
Consumer Discretionary − 28.306 − 39.501 − 0.258 − 0.784
Consumer Staples − 22.031 − 31.454 2.217 3.186
Energy − 30.231 − 40.293 6.642 9.346
Financials − 21.000 − 27.844 0.372 0.201
Health Care − 21.370 − 30.283 − 4.928 − 7.134
Industrials − 25.150 − 34.762 − 0.583 − 0.684
Real Estate − 17.069 − 22.258 − 0.329 − 0.430
Technology − 27.349 − 38.528 2.040 2.797
Telecommunications − 28.696 − 41.374 − 1.656 − 2.368
Utilities − 16.920 − 22.357 1.210 1.681

Note: This table reports the average firm-month total VaR and ES as well as cli- 
mate VaR and ES (in percentages) for 11 sectors during the period from January 
2003 to December 2019. In columns 1 and 2, average VaR and ES estimates at 
1% level are presented. Average climate VaR and ES calculated using Eq. (6) are 
reported in columns 3 and 4. The negative coefficients of environmental scores 
in Tables 4 and 5 may lead to positive Climate VaR or ES estimates. A positive 
(negative) Climate VaR or ES means that the environmental scores contribute to 
a reduction (increase) in the total risk.

1 Also see Basel Committee on Banking Supervision (2021) for a regulatory 
perspective on climate-related risk drivers in the banking system.

2 The commercial product illustrated by MSCI (2020) reports the climate VaR 
spread by different sectors of activity found within a portfolio, whereas our 
study provides a new measure on climate VaR/ES based on the relationship 
between market risks and climate-related and environmental risk factors.
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measures. Section 3 introduces the firm-level data used in the empirical 
analysis. Section 4 presents the estimation results from panel data re-
gressions. Section 5 reports the results of several robustness checks. 
Section 6 concludes. The online Supplemental Appendix contains addi-
tional results.

2. Methodology

2.1. Risk measures

The downside risk is captured by the left tail of stock returns’ dis-
tribution. Two prevalent measures are employed to identify such risk. 
The first measure, VaR, is an estimate of the quantile of the distribution 
of profit and losses and it can be measured at different levels. Due to its 
conceptual simplicity, VaR has become a popular risk measure of market 
risk. However, VaR ignores the shape and structure of the tail of the 
returns’ distribution and is not a coherent risk measure (i.e. it is not 
subadditive) (Artzner et al., 1999). Thus, a second risk measure has been 
introduced, ES, which measures the expected value of the observations 
provided that they exceed VaR; this is a coherent risk measure 
(Roccioletti, 2015).

VaR provides banks and financial institutions with an estimate of the 
minimum loss level that occurs in the worst outcomes at a given level 
α ∈ (0,1). Let FY(⋅|Ωt− 1) denote the cumulative distribution function of 
asset return Yt over a time horizon (such as one day or one week) con-
ditional on the information set Ωt− 1. The VaR at level α can be written 
directly in terms of the inverse cumulative distribution function (Duffie 
and Pan, 1997): 

VaRα
t = F− 1

Y (α|Ωt− 1), (1) 

where VaRα
t denotes the α-quantile of the underlying return distribution 

at time t. As such, Following Ziegel (2016), Nolde and Ziegel (2017), and 
Chen (2018), the VaR at level α at time t can be defined as: 

VaRα
t = inf{Yt |FY(Yt |Ωt− 1)≥ α}. (2) 

ES measures the expectation of return conditional on its value being 
less than VaR. As a coherent risk measure and due to its superior 
properties, ES has become increasingly popular in the risk management 
of banks and financial institutions. Recently, the Basel Committee on 
Banking Supervision (2013) proposed a transition from VaR at 1% level 
to ES at 2.5% level motivated by the global financial crisis in 2008. ES at 
level α at time t can be formally defined as (see Acerbi and Tasche, 
2002): 

ESα
t =E

[
Yt
⃒
⃒Yt ≤VaRR

t ,Ωt− 1
]
. (3) 

Since the generalized autoregressive conditional heteroskedastic 
(GARCH) model of Bollerslev (1986) and its variants (Nelson, 1991) 
capture the time-varying volatility feature, they are widely used to 
forecast VaR and ES in the literature. We also employ the GARCH model 
with skewed t distribution of Hansen (1994) for our estimation of risk 
measures. The model is specified as follows: 

vt = μt + aσt , where a = F− 1
η (α),

et = μt + bσt , where b = E[ηt |ηt ≤ a],

Yt = σtηt , ηt ∼ iid Fη(0, 1),

σ2
t =ω + δσ2

t− 1 + γY2
t− 1 (4) 

where σ2
t is the conditional variance which follows a GARCH(1,1) pro-

cess, ηt is the standardized residual that follows the skewed t distribution 
Fη(0,1) and Yt is the de-meaned daily returns. This model is based on a 
strong link between VaR/ES and equity returns, which has been widely 
discussed in the early literature (e.g. Duffie and Pan, 1997; Dowd, 
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1998). We transform the daily VaR and ES to monthly estimates by 
multiplying average daily risk measures in the given month by the 
square root of 21. There are many other ways to estimate VaR and ES. 
We provide the robustness checks using alternative estimation of VaR 
and ES in Section 5.

2.2. Climate VaR and ES

We employ the Environmental component (denoted as E-score) of 
the ESG score in our study, given that it is related to the environmental 
factors and captures the effects of climate-related issues on companies. 
The E-score is comprised of three sub-scores: the Emission score, the 
Innovation score, and the Resource Use score. Specifically, the Emission 
score reflects the extent to which a firm is committed to reducing 
environmental emissions in its production and operational processes; 
the Innovation score measures a firm’s capacity to create new market 
opportunities through environmental technologies and processes, or 
eco-designed products; the Resource Use score reflects a firm’s perfor-
mance and capacity to reduce the amount of natural resources it uses 
and improve its supply chain management. Taken together, these sub- 
components provide a comprehensive view of a firm’s environmental 
performance and can help investors make informed decisions about the 
long-term sustainability and financial performance of a company. Thus, 
instead of directly revealing the link between this environmental pillar 
and the downside risks, we consider these three sub-components of the 
E-score in order to quantify the market risks attributed to the climate- 
related and environmental risk factors.

To determine the extent to which the risk presented by climate- 
related and environmental factors affects the VaR and ES of the equity 
returns, we begin our analysis by investigating the link between market 
risk measures and environmental scores in various sectors. For every 
sector, we estimate the following panel data regression: 

Downside Riski,t = β0 + β1Emissioni,t + β2Innovationi,t + β3Resourcei,t

+ β4Controlsi,t− 1 + δi + γt + ϵi,t , (5) 

where the Downside Riski,t represents one of the two risk measures (VaRi,t 

and ESi,t) of the firm i in month t at 1% level; Emissioni,t, Innovationi,t and 
Resourcei,t measure the Emission, Innovation and Resource Use scores, 
respectively, of firm i in month t; Controlsi,t− 1 is a vector of control 
variables that may affect downside risk, including size, M/B, leverage, 
ROE, and investment.3 We include firm fixed effect (δi) and year-month 
fixed effect (γt). We obtain ̂β1, ̂β2, and ̂β3, and these capture the effects of 
the climate-related and environmental risk factors on VaR and ES. Also, 
we report the heteroskedasticity-consistent standard errors of White 
(1980).

In the following, we provide the definition for Climate VaR and ES, 
which are the VaR and ES of the stock returns of a firm, attributed to 
environmental scores. Based on Eq. (5), the Climate VaR and ES of firm i 
in month t are calculated as: 

Climate Downside Riski,t = β̂1Emissioni,t + β̂2Innovationi,t + β̂3Resourcei,t .

(6) 

If the β is negative (positive), an increase in the Emission score, 
Innovation score, or Resource Use score increases (decreases) the risk.4

Additionally, we define the portion of VaR or ES attributable to envi-
ronmental scores as follows: 
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3 Following the approach in Bolton and Kacperczyk (2021), we run these 
regressions for firm-months observations. The firm-level control variables are 
updated quarterly, so in our regressions, we use the most recent observation for 
these variables. The emission score variables are updated annually, and for 
these as well we use the most recent observations in our regressions.

4 The environmental scores are between 0 and 100, and the risk is typically 
expressed as a negative number.
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Climate Risk Ratioi,t =
Climate Downside Riski,t

Downside Riski,t
. (7) 

When the sign of the ratio is negative, the effort spent on the 
improvement of these three environmental scores reduces the riskiness 
of the firm. When it is positive, the cost associated with the improvement 

of the environmental scores leads to an increase in the firm’s downside 
risk.

Fig. 2. Heatmaps of the Statistical significance (left) and Economic significance (right) of the Emission score, Innovation score, and Resource Use score for VaR from 
11 sectors during the sample period from January 2003 to December 2019. The statistical significance is represented by the coefficients of environmental scores in 
Table 4. *, **, and *** denote statistical significance at 10%, 5%, and 1% levels, respectively. Economic significance is defined as the percentage change in total VaR 
associated with an increase of one standard deviation in the specified environmental score. In both heatmaps, red (green) boxes indicate that an improvement in the 
specified environmental score increases (decreases) risk.

Table 6 
Summary statistics of climate risk ratio for VaR and ES at 1% level.

Sector Mean Std Max Min

(1) (2) (3) (4) (5) (6) (7) (8)
VaR ES VaR ES VaR ES VaR ES

Basic Materials − 1.703 − 1.861 3.090 3.081 3.825 3.791 − 10.870 − 10.268
Consumer Discretionary 1.026 2.249 1.301 1.744 6.161 9.259 − 1.092 − 0.679
Consumer Staples − 12.382 − 12.771 7.997 8.515 − 1.240 − 1.217 − 32.989 − 36.480
Energy − 26.996 − 29.397 18.960 21.607 − 4.905 − 5.120 − 76.727 − 86.979
Financials − 1.896 − 0.805 4.032 4.084 6.510 9.748 − 11.419 − 10.604
Health Care 26.499 27.671 15.638 16.909 69.415 75.364 1.987 2.130
Industrials 2.585 2.223 2.139 2.020 9.570 8.892 − 2.476 − 2.753
Real Estate 1.879 1.900 3.590 3.660 10.070 10.118 − 8.939 − 8.909
Technology − 8.086 − 7.954 4.949 4.972 − 0.410 − 0.264 − 23.312 − 23.123
Telecommunications 7.141 7.382 8.882 9.614 29.765 33.169 − 9.396 − 9.684
Utilities − 7.776 − 8.314 3.672 3.997 − 1.459 − 1.606 − 15.918 − 17.169

Note: This table presents the summary statistics of the climate risk ratio for VaR and ES (in percentages) for 11 sectors from January 2003 to December 2019. The mean 
values and standard deviations of the ratio appear in columns 1–2 and 3–4, while the maximum and minimum values of the ratio appear in columns 5–6 and 7–8.
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2.3. Quantile regression with penalized fixed effect for panel data

In the recent literature, several environmental proxies have been 
shown to affect stock returns (Engle et al., 2020; Bolton and Kacperczyk, 
2021; Hsu et al., 2023). Here we employ the quantile regression pro-
posed by Koenker (2004) using panel data to discover the relationship 
between stock returns and environmental scores at various quantiles. To 
determine how environmental scores influence returns at different 
quantiles of their distribution, we first investigate the following stan-
dard linear panel regression model: 

yi,t = x⊤
i,tβ + δi + ϵi,t , t = 1,…,Ti, i = 1,…, n, (8) 

where yi,t indicates the firm’s stock return, xi,t is a vector of variables 
including the environmental pillar of the ESG score and the lagged one- 
month size, M/B, leverage, ROE, and investment. δi represents the firm 
fixed effect, and ϵi,t is the error term. The subscript i indexes the firm, 
while the subscript t indexes the time. The following model is then 
considered for the conditional quantile functions (at quantile) of the 
returns in month t of the ith firm yi,t: 

Qyi,t

(
τ|xi,t

)
= x⊤

i,tβ(τ) + δi, t = 1,…,Ti, i = 1,…, n, (9) 

To simultaneously estimate Eq. (9) for several quantiles, we perform 
the following optimization: 

min
(β,δ)

∑q

k=1

∑n

i=1

∑Ti

t=1
wkρτk

(
yi,t − x⊤

i,tβ(τk) − δi

)
, (10) 

where ρτ(ϵ) = ϵ(τ − I(ϵ< 0)) denotes the piecewise linear quantile loss 
function of Koenker and Bassett Jr (1978). The weights wk control the 
relative impact of the q quantiles 

{
τ1,…, τq

}
on the estimation of the 

parameters.
The estimation of β and the firm fixed-effect δi can be improved by 

reducing the unconstrained δi’s toward a common value. To achieve 
that, we employ the l 1 penalty, P(δ) =

∑n
i=1 |δi| in addition to Eq. (10). 

Then, we obtain the estimators by solving the penalized version of Eq. 
(10): 

Fig. 3. Climate risk ratio (in percentages) for 11 sectors at 1% level. The ratios for Var and ES are displayed in (a) and (b), respectively. The left and right boundaries 
of the error bar for each sector are the 5 percent and 95 percent quantiles of the ratio, while the coloured marker represents the mean value. The sectors in the panel 
are ordered in descending order of the average climate risk ratio.
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min
(β,δ)

∑q

k=1

∑n

i=1

∑Ti

t=1
wkρτk

(
yi,t − x⊤

i,tβ(τk) − δi

)
+ λ

∑n

i=1
|δi|, λ > 0, (11) 

where λ is the penalty term. For λ↦0 we obtain the fixed effects esti-
mator described in Eq. (10), while as λ↦∞ the ̂δ↦0 for all i = 1,…, n and 
we obtain an estimate of the model with the fixed effects eliminated.

3. Data

In this section, we describe all datasets used in the empirical analysis. 
Detailed definitions of the variables are provided in Table SA.1 of the 
Supplemental Appendix. We focus on U.S. companies in this study. To 
avoid the potential structural break during the COVID-19 period, our 
primary database ranges from January 2003 to December 2019 and is 
primarily comprised of three datasets obtained from Refinitiv, Compu-
stat, and CRSP. Refinitiv provides data on environmental scores, Com-
pustat provides data on corporate fundamentals, and CRSP provides 
data on stock returns. We implement the matching using CUSIP as the 
main identifier, and the ultimate matching produces 802 unique firms 
and 58,290 firm-month observations.5

According to Section 2.2, we measure firm-level environmental 
performance using the Emission scores, the Innovation scores, and the 
Resource Use scores under the environmental pillar of the Refinitiv ESG 
scores. Calculated at the firm-quarter level, our control variables are 
defined as follows. Size is the natural logarithm of the firm’s market 
capitalization. M/B is the firm’s market capitalization divided by its 
book value. Leverage is the book leverage of the firm. ROE is the firm’s 
earning performance. Investment is the natural logarithm of the firm’s 
capital expenditure plus one (to avoid the natural logarithm of zero). To 
mitigate the impact of outliers, M/B, Leverage, and ROE are winsorized 
at 1% level. We note that firms in various sectors have diverse responses 
to environmental scores. Hence, we report the summary statistics of the 
sample with respect to the FTSE/DJ Industry Classification Benchmark 
(ICB) in Table 1. Telecommunications has the lowest average return 
with a value of 0.617%, while Technology has the highest average re-
turn (2.089%), followed by Health Care (1.620%). The Energy sector has 
the greatest overall environmental score, Emission score and Innovation 
score, with respective values of 63.171, 57.855 and 53.339. The Health 
Care sector has the highest Resource Use score (63.459), but the lowest 
Innovation score (41.626). The lowest Emission and Resource Use scores 

are reported for Industrials, which are 38.535 and 42.599, respectively.

4. Results

4.1. Quantile regression results

We begin our analysis by investigating the relationship between 
stock returns in different quantiles and the environmental pillar of the 
Refinitiv ESG scores, by employing the quantile regression described in 
Section 2.3. Table 2 reports the panel regression results for quantiles τ ∈

{1%,5%,10%,30%,50%,70%,90%,95%,99%}, where all quantiles are 
assigned with equal weights when estimating using Eq. (11). For the 
quantiles below 95%, significant coefficients are observed for the 
environmental score.

The overall trend is that the effect is negative for lower quantiles and 
positive for higher quantiles and is more pronounced for lower quan-
tiles. The signs of the control variables are generally consistent with the 
literature. Fig. 1 illustrates the values of the coefficient of the environ-
mental score, for the above quantiles between τ = 1% to τ = 99%. At the 
1% quantile, the environmental scores have the most negative effect on 
the stock returns. This effect diminishes when the quantile reaches the 
50% quantile, at which point this effect switches to positive. When 
companies struggle, then the costs associated with improving their E- 
score bring additional burdens and so improving the E-score reduces 
overall returns. The effect is opposite when companies do well, in such 
instances improving the E-score increases company returns.

4.2. Climate VaR and ES results

The quantile regression results of Section 4.1 show that there is a 
differential effect of the environmental scores on the returns, depending 
on which quantile the returns falls into. This subsection examines the 
relationship between downside risk (VaR and ES) and environmental 
scores. We collect daily stock returns from January 2003 to December 
2019 using CUSIP from CRSP as described in Section 3. Then, the firm- 
month VaR and ES at 1% level are estimated using the specification in 
Section 2.1. We present the average monthly VaR and ES across several 
sectors in columns 1 and 2 of Table 3. Real Estate and Utilities are the 
sectors with the lowest average VaR and ES, whereas Energy is the sector 
with the highest total risk.

To reveal the effects of environmental scores on downside risk, we 
regress the VaR and ES at 1% level on the Emission score, the Innovation 
score, the Resource Use score, along with firm-level control variables. 
The results are presented in Table 4 and Table 5 for VaR and ES, 

Table 7 
The climate risk ratios and ratio rankings.

Sector Climate risk ratio Rank

(1) (2) (3) (4) (5) (6) (7) (8)

G-SKT GJR-G-SKT G-FZ CARE G-SKT GJR-G-SKT G-FZ CARE

Basic Materials − 1.703 − 0.410 1.351 3.031 6 6 7 7
Consumer Discretionary 1.026 1.951 1.265 2.361 7 7 6 6
Consumer Staples − 12.382 − 16.257 − 11.202 − 10.786 2 2 2 3
Energy − 26.996 − 28.556 − 27.457 − 17.976 1 1 1 1
Financials − 1.896 − 1.355 − 3.521 − 5.484 5 5 5 5
Health Care 26.499 27.649 20.652 17.795 11 11 11 11
Industrials 2.585 4.126 2.018 3.790 9 9 8 8
Real Estate 1.879 1.964 2.149 4.630 8 8 9 9
Technology − 8.105 − 8.248 − 7.668 − 7.601 3 3 4 4
Telecommunications 7.141 8.699 12.404 5.460 10 10 10 10
Utilities − 7.776 − 6.516 − 8.355 − 11.218 4 4 3 2

Note: This table presents the average climate risk ratios (in percentage) and the rankings for 11 sectors (the model with the lowest ratio is ranked 1 and the model with 
the highest ratio is ranked 11) based on the climate risk ratio for VaR estimates at 1% level from January 2003 to December 2019 for 3 risk model specifications. The 
negative (positive) ratio refers to a reduction (increase) in the total risk due to environmental scores. G-SKT, GJR-G- SKT, G-FZ, and CARE correspond to the GARCH 
model with skewed t distribution, the GJR-GARCH model with skewed t distribution, the GARCH model estimated with the FZ0 loss function from Fissler and Ziegel 
(2016), and the CARE model based on Taylor (2008), respectively.

5 The correlations of the environmental scores and control variables are re-
ported in the Supplemental Appendix.
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respectively. The Energy and Utilities sectors have only positive co-
efficients across all scores, indicating that an improvement in any one of 
these environmental scores of firms in these two sectors leads to a 
reduction in the total risk of the firms. Health Care, however, has solely 
negative coefficients on the environmental scores, which indicates that 
as the environmental scores increase, the firms’ total risks increase 
proportionally. In other words, the companies’ investments in 
improving their environmental scores reduce their total risk in the En-
ergy and Utilities sectors, whilst it increases their total risk in the Health 
Care sector. This might be related to the link between medical services 
and emissions, as also argued by Pichler et al. (2019). Building low 
carbon strategies requires considerable effort, given the complexities of 
medical supply chains and health treatments, and can be very costly for 
health companies, which makes emission reductions hard to achieve. 
Other sectors have coefficients with mixed signs associated with the 
three environmental scores. Due to the differences of sectors, some 
sectors benefit from increases in the individual scores but are negatively 
affected by others. For instance, firms in the Industrials sector have their 
risk affected positively by their Emission score but negatively by their 
Innovation score and Resource Use score.

The left panel of Fig. 2 displays the heatmaps of the statistical sig-
nificance of VaR with respect to the three environmental scores. Ac-
cording to the value of the coefficients, sectors including Consumer 
Staples, Energy, and Utilities benefit from the improvement in all of the 
three environmental scores. The Innovation score has a positive and 
statistically significant effect on the total risk of the companies in these 
three sectors. This effect is also observed for Resource Use Score in the 
Consumer Staples and Energy sectors. However, the negative signs of the 
coefficients of the three environmental scores in the Health Care sector 
indicate that the additional expenditures made by companies to improve 
their environmental scores raise their total risk. The right panel of Fig. 2
reports the economic significance of the results. Several key observa-
tions are worth noting.6 First, an one-standard-deviation increase in the 
Resource Use score of companies in the Energy sector leads to a wors-
ening of 2.042% in their total risk. Second, companies in the Health Care 
sector suffer a deterioration of 1.490% in their total risk due to an one- 

Fig. 4. Expectile-based climate risk ratio (in percentages) for 11 sectors at 1% level. The ratios for expectile-based Var and ES are displayed in (a) and (b), 
respectively. The left and right boundaries of the error bar for each sector are the 5 percent and 95 percent quantiles of the ratio, while the coloured marker 
represents the mean value. The sectors in the panel are ordered in descending order of the average expectile-based climate risk ratio.

6 To our knowledge, there is no existing literature of performing such a 
sectoral analysis to compare our results against.
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standard-deviation increase in the Emission score. Third, an one- 
standard-deviation increase in the Resource Use score of companies in 
the Telecommunication sector is associated with a 2.392% improvement 
in their total risk. Lastly, companies in the Technology sector benefit an 
improvement of 1.159% in their total risk via an one-standard-deviation 
increase in the Emission score.

Climate VaR and ES are computed7 based on Eq. (6), and the results 
are presented in columns 3 and 4 in Table 3. In the Energy sector, the 
average Climate VaR (ES) is the most positive at 6.642% (9.346%), 
which implies that the environmental scores lead to a reduction of total 
VaR (ES). On the contrary, the VaR and ES of firms in Health Care 
attributed to environmental scores are the highest in absolute value. The 
cost associated with improving the environmental scores leads to an 
increase in the firms’ downside risk in this sector. A similar effect can be 
seen in the Telecommunication sector.

We employ the climate-related and environmental risk measure 
proposed in Eq. (7) to demonstrate the extent to which the 

environmental scores affect the total downside risk of the firms. The 
summary statistics of the climate risk ratio for VaR and ES for different 
sectors are reported in Table 6. A negative (positive) sign in the mean 
value of the climate risk ratio indicates that, on average, improvements 
in the environmental scores reduce (increase) the total risk of the firm. 
Sectors including Basic Materials, Consumer Staples, Energy, Financials, 
Technology, and Utilities benefit from the effort spent on increasing the 
companies’ environmental scores, and the proportion of total VaR 
reduced by environmental scores ranges from 1.703% to 26.996%. 
Sectors such as Consumer Discretionary, Health Care, Industrials, Real 
Estate, and Telecommunications are negatively affected by the increases 
in the companies’ environmental scores, but the effect on their total VaR 
is less than 7.2%, with the exception of Health Care, which is charac-
terized by VaR increases of 26.499% on average, due to the companies’ 
environmental scores. Similar results can be found for ES.

To visually illustrate the fraction of VaR and ES that is attributable to 
the environmental scores, we display summary statistics of the climate 
risk ratio of VaR and ES in Fig. 3, and sort the climate risk ratio of 
different sectors in descending order in both panels. We would like to 
highlight three points. First, in four sectors (particularly the Energy 

Fig. 5. Summary statistics of the climate risk ratio (in percentages) for VaR at 2.5% (a) and 5% (b) levels for 11 sectors. The left and right boundaries of the error bars 
are the 5 percent and 95 percent quantiles of the ratio, while the coloured marker represents the mean value. The sectors in both panels are ordered in descending 
order of the average climate risk ratio.

7 As far as we know, there is no backtest for climate VaR/ES developed yet.
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sector), the climate risk ratio is negative, as expected, showing that 
climate-related and environmental risks are reduced when companies 
improve their environmental performance. In the Energy sector, the 
climate-related and environmental risk factors can reduce VaR or ES by 
about 28% on average and the 5% quantile of the ratio for VaR is 
− 65.294% and for ES it is − 71.872%. Second, the climate risk ratio in 
six sectors is not significant on average. The ranking of sectors including 
Health Care, Telecommunication, Consumer Staples, and Energy are the 
same in both Fig. 3(a) and (b). Third, the only outlier is the Health Care 
sector where the effect is inversed, which means by improving envi-
ronmental performance, the VaR and ES of the companies increases.

In the Health Care sector, the climate-related and environmental risk 
factors contribute approximately 27% on average to the total VaR and 
ES, the 95% quantile of the ratio for VaR is 49.956% and for ES it is 
53.454%. In this sector, emissions can result from medical treatments 
and low emission alternatives are often expensive, making it difficult to 
reduce emissions, the priority being improvements in health and 
reducing the risks to the patients; see Pichler et al. (2019) for further 
deliberation.

5. Robustness checks

5.1. Asymmetric VaR and ES models

To account for the possibility of asymmetry in the volatility, we 
repeat our previously presented climate-related and environmental risks 
estimation methodology using the GJR-GARCH model (Glosten et al., 
1993) with skewed t innovations. Table 7 (column 2) depicts the climate 
risk ratios for the GJR- GARCH model. We notice that it yields similar 
but slightly different values for the climate risk ratio. When it comes to 
the ranking of the sectors based on the climate risk ratios (Table 7, 
column 6), there is a high degree of consistency, with the ratios 
remaining mostly unaffected.

5.2. Semi-parametric VaR and ES models

Recently, Patton et al. (2019) introduced semi-parametric models for 
VaR and ES. In the following, we check whether our results are affected 
if the risk measures are obtained via one of the semi-parametric models, 
namely the GARCH-FZ model. Table 7 (columns 3) shows the climate 
risk ratios obtained with this model, which is similar to the previous 
results. The ranking of the sectors based on the GARCH-FZ model 
(Table 7, column 7) is consistent with our earlier rankings.

5.3. Expectile-based climate VaR and ES

In this section, we explore expectile-based climate risk measures as 
an alternative. This is motivated by the fact that expectiles have a 
different dependence on the form of the distribution, as compared to 
quantiles. Whilst a change in the shape of the distribution will not alter 
the quantile, it will modify the expectile. Taylor (2008) developed the 
Conditional Autoregressive Expectile (CARE) model to compute 
expectile-based risk measures. Using the CARE model, we obtain the 
expectile-based VaR and ES, which is further used to calculate climate 
VaR and ES (as well as risk ratios). Fig. 4 shows the expectile-based 
climate risk ratios for various sectors. Table 7 (columns 4 and 8) pro-
vides the expectile-based climate risk ratios as well as sector ranks. It can 
be noted that the results obtained from the expectile-based measures are 
in line with the quantile-based values reported in Section 4.2, demon-
strating the robustness of our findings to expectile-based risk measures.

5.4. Alternative risk levels

After the 2007–2008 financial crisis, the Basel Committee on 
Banking Supervision (2013) proposed a transition from 1% VaR to 2.5% 
ES. In addition to VaR and ES at 1%, different risk levels are therefore 

explored in this robustness check. We employ VaR at 2.5% and 5% levels 
estimated from the GARCH model with skewed t distribution, as 
dependent variables in Eq. (5).8 Fig. 5 presents the summary of the 
climate risk ratio for VaR at 2.5% and 5% levels for the 11 sectors 
previously considered. Figs. 3 and 5 are similar, in that the ranking 
position of all sectors corresponds between the two figures. The 5% 
(95%) quantile of the climate risk ratio for companies in the Energy 
(Health Care) sector at 1% risk level is on average − 65.293 (49.956), 
and at the 5% risk level, it is − 60.268 (46.893). By shifting 1% risk levels 
to less extreme risk levels, the influence of environmental scores on 
downside risk is reduced, with the exception of companies in the Fi-
nancials, Industrials, and Technology sectors, which have 5% risk levels 
on average more impacted by the companies’ environmental scores.

6. Conclusion

In this study, we propose new measures of climate downside risk that 
reveal to what extent the firm-level environmental scores influence the 
downside risk of the firms. We reveal the statistically significant nega-
tive relationship between stock returns and environmental pillar of the 
Refinitiv ESG scores at low quantiles of the returns. We employ the 
Emission score, Innovation score, and Resource Use score of the envi-
ronmental pillar to explain the downside risk of the firms in various 
sectors. Our definitions of climate VaR and ES capture the market risk 
components associated to climate-related and environmental risks. We 
document that there is heterogeneity in the sensitivity of the firm-level 
risk to environmental scores. Our framework shows that firms in some 
sectors, notably Energy and Utilities, can reduce their downside risk by 
improving their firms’ environmental scores, while for companies in 
sectors such as Health Care, improving the environmental scores is not 
cost-effective. These results are consistent with various risk assessments 
and levels of risk. These findings have important implications for in-
vestors and business managers to capture sensitivities to climate-related 
risk factors. Future research could consider a more nuanced decompo-
sition of climate-related and environmental risks, in addition to the 
investigation of the relationship between downside risks and physical 
risk factors (e.g. rising sea levels or hurricane-prone regions).
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E. Lazar et al.                                                                                                                                                                                                                                   Journal of Environmental Management 373 (2025) 123393 

11 

https://doi.org/10.1016/j.jenvman.2024.123393
https://doi.org/10.1016/j.jenvman.2024.123393


References

Acerbi, C., Tasche, D., 2002. Expected shortfall: a natural coherent alternative to Value at 
Risk. Econ. Notes 31 (2), 379–388. https://doi.org/10.1111/1468-0300.00091.

Acharya, V.V., Berner, R., Engle, R., et al., 2023. Climate stress testing. Annual Review of 
Financial Economics 15, 291–326.

Allen, S.L., 2012. Financial Risk Management: A Practitioner’s Guide to Managing 
Market and Credit Risk. John Wiley & Sons.

Andersson, M., Bolton, P., Samama, F., 2016. Hedging climate risk. Financ. Anal. J. 72 
(3), 13–32. https://doi.org/10.2469/faj.v72.n3.4.

Anttila-Hughes, J., 2016. Financial market response to extreme events indicating 
climatic change. Eur. Phys. J. Spec. Top. 225 (3), 527–538. https://doi.org/ 
10.1140/epjst/e2015-50098-6.

Ardia, D., Bluteau, K., Boudt, K., et al., 2023. Climate change concerns and the 
performance of green vs. brown stocks. Manag. Sci. 69 (12), 7607–7632. https://doi. 
org/10.1287/mnsc.2022.4636.

Artzner, P., 1997. Thinking coherently. Risk 10, 68–71.
Artzner, P., Delbaen, F., Eber, J.M., et al., 1999. Coherent measures of risk. Math. 

Finance 9 (3), 203–228. https://doi.org/10.1111/1467-9965.00068.
Baldauf, M., Garlappi, L., Yannelis, C., 2020. Does climate change affect real estate 

prices? Only if you believe in it. Rev. Financ. Stud. 33 (3), 1256–1295. https://doi. 
org/10.1093/rfs/hhz073.

Bank of England, 2021. Bank of England report on climate-related risks and the 
regulatory capital frameworks. Available at: https://www.bankofengland.co.uk/ 
prudential-regulation/publication/2023/report-on-climate-related-risks-and-the-reg 
ulatory-capital-frameworks. (Accessed 16 October 2024).

Bansal, R., Kiku, D., Ochoa, M., 2016. Price of Long-Run Temperature Shifts in Capital 
Markets. National Bureau of Economic Research. Technical Report, Available at: 
https://papers.ssrn.com/sol3/papers.cfm?abstractid=2827447. (Accessed 15 
January 2023).

Barnett, M., 2023. Climate Change and Uncertainty: An Asset Pricing Perspective. 
Management Science 69 (12), 7562–7584. https://doi.org/10.1287/ 
mnsc.2022.4635.

Barnett, M., Brock, W., Hansen, L.P., 2020. Pricing uncertainty induced by climate 
change. Rev. Financ. Stud. 33 (3), 1024–1066. https://doi.org/10.1093/rfs/hhz144.

Basel Committee on Banking Supervision, 2013. Fundamental review of the trading 
book: a revised market risk framework. available at: http://www.bis.org/publ/bc 
bs265.pdf. (Accessed 15 January 2023).

Basel Committee on Banking Supervision, 2021. Climate-related risk drivers and their 
transmission channels. Available at: https://www.bis.org/bcbs/publ/d517.pdf. 
(Accessed 12 April 2024).

Bernstein, A., Gustafson, M.T., Lewis, R., 2019. Disaster on the horizon: the price effect of 
sea level rise. J. Financ. Econ. 134 (2), 253–272. https://doi.org/10.1016/j. 
jfineco.2019.03.013.

Best, R., Burke, P.J., Jotzo, F., 2020. Carbon pricing efficacy: Cross-country evidence. 
Environ. Resour. Econ. 77 (1), 69–94. https://doi.org/10.1007/s10640-020-00436- 
x.

Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. 
J. Econom. 31 (3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1.

Bolton, P., Kacperczyk, M., 2021. Do investors care about carbon risk? J. Financ. Econ. 
142 (2), 517–549. https://doi.org/10.1016/j.jfineco.2021.05.008.

Burke, M., Hsiang, S.M., Miguel, E., 2015. Global non-linear effect of temperature on 
economic production. Nature 527, 235–239. https://doi.org/10.1038/nature15725.

Chen, J., 2018. On exactitude in financial regulation: value-at-risk, expected shortfall, 
and expectiles. Risks 6 (2), 61. https://doi.org/10.3390/risks6020061.

Chen, Q., Gerlach, R., Lu, Z., 2012. Bayesian Value-at-Risk and expected shortfall 
forecasting via the asymmetric Laplace distribution. Comput. Stat. Data Anal. 56 
(11), 3498–3516. https://doi.org/10.1016/j.csda.2010.06.018.

Choi, D., Gao, Z., Jiang, W., 2020. Attention to global warming. Rev. Financ. Stud. 33 
(3), 1112–1145. https://doi.org/10.1093/rfs/hhz086.

Cornell, B., 2021. ESG preferences, risk and return. Eur. Financ. Manag. 27 (1), 12–19.
Curtin, J., McInerney, C., Gallach′oir, B.O., et al., 2019. Quantifying stranding risk for 

fossil fuel assets and implications for renewable energy investment: a review of the 
literature. Renew. Sustain. Energy Rev. 116, 109402. https://doi.org/10.1016/j. 
rser.2019.109402.

Dempster, M.A.H., 2002. Risk Management: Value at Risk and beyond. Cambridge 
University Press.

Dietz, S., Bowen, A., Dixon, C., et al., 2016. ‘Climate value at risk’ of global financial 
assets. Nat. Clim. Change 6 (7), 676–679. https://doi.org/10.1038/nclimate2972.

Dowd, K., 1998. Beyond Value at Risk: the New Science of Risk Management, vol. 96. 
Wiley.

Duffie, D., Pan, J., 1997. An overview of value at risk. J. Deriv. 4 (3), 7–49. https://doi. 
org/10.3905/jod.1997.407971.

Engle, R.F., Giglio, S., Kelly, B., et al., 2020. Hedging climate change news. Rev. Financ. 
Stud. 33 (3), 1184–1216. https://doi.org/10.1093/rfs/hhz072.

European Central Bank, 2020. Guide on climate-related and environmental risks: 
supervisory expectations relating to risk management and disclosure. Available at: 
https://www.bankingsupervision.europa. 
eu/ecb/pub/pdf/ssm.202011finalguideonclimate-relatedandenvironmentalrisks~5 
8213f6564.en.pdf. (Accessed 12 April 2024).

European Central Bank, 2022. 2022 climate risk stress test. Available at https://www. 
bankingsupervision.europa.eu/ecb/pub/pdf/ssm. 
climatestresstestreport.20220708~2e3cc0999f.en.pdf. (Accessed 16 October 2024).

Fissler, T., Ziegel, J.F., 2016. Higher order elicitability and Osband’s principle. Ann. Stat. 
44 (4), 1680–1707. https://doi.org/10.1214/16-AOS1439.

Gerlach, R., Wang, C., 2020. Semi-parametric dynamic asymmetric Laplace models for 
tail risk forecasting, incorporating realized measures. Int. J. Forecast. 36 (2), 
489–506. https://doi.org/10.1016/j.ijforecast.2019.07.003.

Giese, G., Lee, L.E., Melas, D., et al., 2019. Foundations of ESG investing: how ESG affects 
equity valuation, risk, and performance. J. Portfolio Manag. 45 (5), 69–83.

Giese, G., Nagy, Z., Lee, L.E., 2021. Deconstructing ESG ratings performance: Risk and 
return for e, s, and g by time horizon, sector, and weighting. J. Portfolio Manag. 47 
(3), 94–111.

Giglio, S., Kelly, B., Stroebel, J., 2021. Climate finance. Annual Review of Financial 
Economics 13, 15–36. https://doi.org/10.1146/annurev-financial-102620-103311.

Glosten, L.R., Jagannathan, R., Runkle, D.E., 1993. On the relation between the expected 
value and the volatility of the nominal excess return on stocks. J. Finance 48 (5), 
1779–1801.

Goldsmith-Pinkham, P., Gustafson, M., Lewis, R., et al., 2019. Sea level rise and 
municipal bond yields, Jacobs Levy equity management center for quantitative 
financial research paper. https://dx.doi.org/10.2139/ssrn.3478364. (Accessed 15 
January 2023).

Hansen, B.E., 1994. Autoregressive conditional density estimation. Int. Econ. Rev. 35 (3), 
705–730. https://doi.org/10.2307/2527081.

Hong, H., Li, F.W., Xu, J., 2019. Climate risks and market efficiency. J. Econom. 208 (1), 
265–281. https://doi.org/10.1016/j.jeconom.2018.09.015.

Hsu, P.H., Li, K., Tsou, C.Y., 2023. The pollution premium. J. Finance. https://doi.org/ 
10.1111/jofi.13217, 78, 1343-1392. 

Huynh, T.D., Xia, Y., 2021. Climate change news risk and corporate bond returns. 
J. Financ. Quant. Anal. 56 (6), 1985–2009. https://doi.org/10.1017/ 
S0022109020000757.

Ilhan, E., Sautner, Z., Vilkov, G., 2021. Carbon tail risk. Rev. Financ. Stud. 34 (3), 
1540–1571. https://doi.org/10.1093/rfs/hhaa071.

Jorion, P., 2000. Risk management lessons from long-term capital management. Eur. 
Financ. Manag. 6 (3), 277–300. https://doi.org/10.1111/1468-036X.00125.

Koenker, R., 2004. Quantile regression for longitudinal data. J. Multivariate Anal. 91 (1), 
74–89. https://doi.org/10.1016/j.jmva.2004.05.006.

Koenker, R., Bassett, Jr G., 1978. Regression quantiles. Econometrica: J. Econom. Soc. 46 
(1), 33–50. https://doi.org/10.2307/1913643.

Kumar, A., Xin, W., Zhang, C., 2019. Climate Sensitivity, Mispricing, and Predictable 
Returns. University of Miami Working Paper. doi:10.2139/ssrn.3331872. (Accessed 
15 January 2023).

Lesk, C., Rowhani, P., Ramankutty, N., 2016. Influence of extreme weather disasters on 
global crop production. Nature 529, 84–87.

Luo, D., 2022. Esg, liquidity, and stock returns. J. Int. Financ. Mark. Inst. Money 78 
(101), 526.

MSCI, 2020. Climate value-at-risk. Available at: https://www.msci.com/documents/ 
1296102/16985724/MSCI-ClimateVaR-Introduction-Feb2020.pdf. Accessed on 
October 2024. 

Nelson, D.B., 1991. Conditional heteroskedasticity in asset returns: a new approach. 
Econometrica: J. Econom. Soc. 59 (2), 347–370. https://doi.org/10.2307/2938260.

Network for Greening the Financial System, 2020. Guide for Supervisors Integrating 
climate-related and environmental risks into prudential supervision Available at: htt 
ps://www.ngfs.net/sites/default/files/medias/documents/ngfsguideforsupervisors. 
pdf. (Accessed 12 April 2024).

Network for Greening the Financial System, 2023. NGFS Scenarios for central banks and 
supervisors. Available at: https://www.ngfs.net/sites/default/files/medias/d 
ocuments/ngfsclimatescenariosforcentralbanksandsupervisorsphaseiv.pdf. 
(Accessed 12 April 2024).

Nolde, N., Ziegel, J.F., 2017. Elicitability and backtesting: perspectives for banking 
regulation. Ann. Appl. Stat. 11 (4), 1833–1874. https://doi.org/10.1214/17- 
AOAS1041.

Painter, M., 2020. An inconvenient cost: the effects of climate change on municipal 
bonds. J. Financ. Econ. 135 (2), 468–482. https://doi.org/10.1016/j. 
jfineco.2019.06.006.

Patton, A.J., Ziegel, J.F., Chen, R., 2019. Dynamic semiparametric models for expected 
shortfall (and Value-at-Risk). J. Econom. 211 (2), 388–413. https://doi.org/ 
10.1016/j.jeconom.2018.10.008.

Pichler, P.P., Jaccard, I.S., Weisz, U., et al., 2019. International comparison of health care 
carbon footprints. Environ. Res. Lett. 14 (6). https://doi.org/10.1088/1748-9326/ 
ab19e1, 064,004. 

Roccioletti, S., 2015. Backtesting Value at Risk and Expected Shortfall. Springer. https:// 
doi.org/10.1007/978-3-658-11908-9.

Sautner, Z., Van Lent, L., Vilkov, G., et al., 2023. Pricing climate change exposure. 
Manag. Sci. 69 (12), 7540–7561.

Seltzer, L.H., Starks, L., Zhu, Q., 2022. Climate Regulatory Risk and Corporate Bonds. 
National Bureau of Economic Research. https://doi.org/10.2139/ssrn.3563271. 
Technical Report. (Accessed 15 January 2023).

Tankov, P., Tantet, A., 2019. Climate data for physical risk assessment in finance. SSRN 
3480156. https://dx.doi.org/10.2139/ssrn.3480156. (Accessed 15 January 2023).

Taylor, J.W., 2008. Estimating value at risk and expected shortfall using expectiles. 
J. Financ. Econom. 6 (2), 231–252. https://doi.org/10.1093/jjfinec/nbn001.

Taylor, J.W., 2019. Forecasting Value at Risk and expected shortfall using a 
semiparametric approach based on the asymmetric Laplace distribution. J. Bus. 
Econ. Stat. 37 (1), 121–133. https://doi.org/10.1080/07350015.2017.1281815.

White, H., 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct 
test for heteroskedasticity. Econometrica: J. Econom. Soc. 48 (4), 817–838. https:// 
doi.org/10.2307/1912934.

Ziegel, J.F., 2016. Coherence and elicitability. Math. Finance 26 (4), 901–918. https:// 
doi.org/10.1111/mafi.12080.

E. Lazar et al.                                                                                                                                                                                                                                   Journal of Environmental Management 373 (2025) 123393 

12 

https://doi.org/10.1111/1468-0300.00091
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref2
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref2
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref3
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref3
https://doi.org/10.2469/faj.v72.n3.4
https://doi.org/10.1140/epjst/e2015-50098-6
https://doi.org/10.1140/epjst/e2015-50098-6
https://doi.org/10.1287/mnsc.2022.4636
https://doi.org/10.1287/mnsc.2022.4636
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref7
https://doi.org/10.1111/1467-9965.00068
https://doi.org/10.1093/rfs/hhz073
https://doi.org/10.1093/rfs/hhz073
https://www.bankofengland.co.uk/prudential-regulation/publication/2023/report-on-climate-related-risks-and-the-regulatory-capital-frameworks
https://www.bankofengland.co.uk/prudential-regulation/publication/2023/report-on-climate-related-risks-and-the-regulatory-capital-frameworks
https://www.bankofengland.co.uk/prudential-regulation/publication/2023/report-on-climate-related-risks-and-the-regulatory-capital-frameworks
https://papers.ssrn.com/sol3/papers.cfm?abstractid=2827447
https://doi.org/10.1287/mnsc.2022.4635
https://doi.org/10.1287/mnsc.2022.4635
https://doi.org/10.1093/rfs/hhz144
http://www.bis.org/publ/bcbs265.pdf
http://www.bis.org/publ/bcbs265.pdf
https://www.bis.org/bcbs/publ/d517.pdf
https://doi.org/10.1016/j.jfineco.2019.03.013
https://doi.org/10.1016/j.jfineco.2019.03.013
https://doi.org/10.1007/s10640-020-00436-x
https://doi.org/10.1007/s10640-020-00436-x
https://doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/10.1016/j.jfineco.2021.05.008
https://doi.org/10.1038/nature15725
https://doi.org/10.3390/risks6020061
https://doi.org/10.1016/j.csda.2010.06.018
https://doi.org/10.1093/rfs/hhz086
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref24
https://doi.org/10.1016/j.rser.2019.109402
https://doi.org/10.1016/j.rser.2019.109402
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref26
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref26
https://doi.org/10.1038/nclimate2972
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref28
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref28
https://doi.org/10.3905/jod.1997.407971
https://doi.org/10.3905/jod.1997.407971
https://doi.org/10.1093/rfs/hhz072
https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.202011finalguideonclimate-relatedandenvironmentalrisks~58213f6564.en.pdf
https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.202011finalguideonclimate-relatedandenvironmentalrisks~58213f6564.en.pdf
https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.202011finalguideonclimate-relatedandenvironmentalrisks~58213f6564.en.pdf
https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.climatestresstestreport.20220708~2e3cc0999f.en.pdf
https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.climatestresstestreport.20220708~2e3cc0999f.en.pdf
https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.climatestresstestreport.20220708~2e3cc0999f.en.pdf
https://doi.org/10.1214/16-AOS1439
https://doi.org/10.1016/j.ijforecast.2019.07.003
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref35
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref35
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref36
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref36
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref36
https://doi.org/10.1146/annurev-financial-102620-103311
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref38
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref38
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref38
https://dx.doi.org/10.2139/ssrn.3478364
https://doi.org/10.2307/2527081
https://doi.org/10.1016/j.jeconom.2018.09.015
https://doi.org/10.1111/jofi.13217
https://doi.org/10.1111/jofi.13217
https://doi.org/10.1017/S0022109020000757
https://doi.org/10.1017/S0022109020000757
https://doi.org/10.1093/rfs/hhaa071
https://doi.org/10.1111/1468-036X.00125
https://doi.org/10.1016/j.jmva.2004.05.006
https://doi.org/10.2307/1913643
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref49
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref49
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref50
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref50
https://www.msci.com/documents/1296102/16985724/MSCI-ClimateVaR-Introduction-Feb2020.pdf
https://www.msci.com/documents/1296102/16985724/MSCI-ClimateVaR-Introduction-Feb2020.pdf
https://doi.org/10.2307/2938260
https://www.ngfs.net/sites/default/files/medias/documents/ngfsguideforsupervisors.pdf
https://www.ngfs.net/sites/default/files/medias/documents/ngfsguideforsupervisors.pdf
https://www.ngfs.net/sites/default/files/medias/documents/ngfsguideforsupervisors.pdf
https://www.ngfs.net/sites/default/files/medias/documents/ngfsclimatescenariosforcentralbanksandsupervisorsphaseiv.pdf
https://www.ngfs.net/sites/default/files/medias/documents/ngfsclimatescenariosforcentralbanksandsupervisorsphaseiv.pdf
https://doi.org/10.1214/17-AOAS1041
https://doi.org/10.1214/17-AOAS1041
https://doi.org/10.1016/j.jfineco.2019.06.006
https://doi.org/10.1016/j.jfineco.2019.06.006
https://doi.org/10.1016/j.jeconom.2018.10.008
https://doi.org/10.1016/j.jeconom.2018.10.008
https://doi.org/10.1088/1748-9326/ab19e1
https://doi.org/10.1088/1748-9326/ab19e1
https://doi.org/10.1007/978-3-658-11908-9
https://doi.org/10.1007/978-3-658-11908-9
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref60
http://refhub.elsevier.com/S0301-4797(24)03379-6/sref60
https://doi.org/10.2139/ssrn.3563271
https://dx.doi.org/10.2139/ssrn.3480156
https://doi.org/10.1093/jjfinec/nbn001
https://doi.org/10.1080/07350015.2017.1281815
https://doi.org/10.2307/1912934
https://doi.org/10.2307/1912934
https://doi.org/10.1111/mafi.12080
https://doi.org/10.1111/mafi.12080


 

 
MOODY’S ANALYTICS          INCORPORATING CLIMATE RISK IN TO STRATEGIC ASSET ALLOCATION 1 

WHITEPAPER 
APRIL 2022 

Authors 
Gavin Conn  
Director-Insurance Research 
 
Sohini Chowdhury 
Director-Solutions Specialist 

Contact Us 
Americas 
+1.212.553.1658 
clientservices@moodys.com 

Europe 
+44.20.7772.5454 
clientservices.emea@moodys.com 

Asia (Excluding Japan) 
+85.2.2916.1121 
clientservices.asia@moodys.com 

Japan 
+81.3.5408.4100 
clientservices.japan@moodys.com 

 

Incorporating climate risk in to Strategic 
Asset Allocation 
Scenario Analysis is a key pillar of climate-aware Strategic Asset 
Allocation 

The systemic nature of climate change drives variations in the risk and return of a 
portfolio through its impact on the future time paths of macroeconomic and 
market parameters, such as GDP, inflation, interest rates, and equity risk 
premium. Climate scenario analysis and stress testing are important tools to 
assess/quantify the financial impact of climate change on the portfolio. They are a 
key component of climate-aware strategic asset allocation (SAA), asset and 
liability management (ALM), and overall risk management, especially for asset 
owners who also have a stream of future liability payments – such as insurance 
companies.  

Important today, more than ever  

An increasing number of investors across the globe are adopting a net zero 
investment framework. While the path towards net zero involves various steps 
including setting targets around emissions. Investments in aligned assets, 
incorporating climate scenario analysis and stress testing within SAA allows 
investors to systematically consider the risks and opportunities from climate 
change in the risk and return expectations of assets, especially of long-term 
assets. 
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The Institutional Investors Group on Climate Change (IIGC) has published a framework which was developed through 
discussions with its members. This emphasizes the role of integrating climate scenario analysis in to asset allocation. 

 

Source: IGCC Navigating climate scenario analysis – a guide for institutional investors1 

Climate-aware Strategic Asset Allocation 

Asset allocation must evolve to incorporate climate-related risks and the impact from any constraints imposed as insurers 
target their climate. A top down approach which looks at how climate change related drivers affect returns of asset classes. 
The analysis should ideally combine a top-down mapping at the macroeconomic level and a bottom-up analysis at the sector 
and company level. Creating an understanding of the risks and opportunities within the existing asset allocation structure and 
through evolving the asset mix over time. In a top-down-only analysis, some regional and sectoral impacts might be netted 
out, especially in a diversified portfolio. A combination of top-down and bottom-up approaches, although data- and resource-
intensive, will achieve broad coverage. In addition, the depth of analysis required to make key investment decisions in sectors 
where these risks are most material.  

 

 
1 Institutional Investors Group on Climate Change 
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1. Target Setting 
As with traditional asset allocation, the process starts with assumption setting. This takes place at both the portfolio level and 
the asset class level. At the portfolio level, the insurer must set emissions targets, based on science-based pathways such as, 
temperature-growth target trajectories, aligned to their net zero commitment. Following COP26 we have seen a wave of net 
zero announcements from financial institutions. These company-wide objectives now need to be translated in to more 
granular metrics for example,% of assets under management (AUM) in net zero assets. In their recent paper2, the UK 
Prudential Regulatory Authority states that “their analysis found significant variation between firms in translating climate 
science in to targets and scenarios, on modeling climate-related market risk and capital modeling”. 

For insight in to the types of metric which an insurer may establish, we can look to the regulation in the pensions world, where 
new climate risk reporting requirements came in to effect for large schemes on 1 October 2021. Trustees must select and 
report on at least three metrics, including an absolute emissions metric, an emissions intensity metric and one additional 
climate related metric3. The additional climate change metrics includes a portfolio alignment metric and climate value at risk 
(VaR). The temperature alignment metric compares the implied warming potential of the portfolio to established indices and 
indicates how the portfolio is positioned compared to a particular climate pathway or global warming outcome. The Moody’s 
temperature alignment data4 assesses the forward-looking trajectory of companies’ emissions. Based on their greenhouse gas 
emissions reduction targets and covers approximately 4,400 large publicly listed companies. The climate VaR provides a 
forward-looking valuation assessment to quantify climate risks and may provide a metric to help adjust the investment 
portfolio to limit exposure to climated-related risks. 

2. Asset Universe 
To impose Economic Social Governance (ESG) criteria as constraints in the optimization, it is necessary to have ESG 
classification data, ideally at individual security level. It may be sourced from the external asset manager and the insurer may 
wish to incorporate their own views on top of this. Ideally the ESG classification should explicitly categorize the E, S, and G 
considerations. Vigeo Eiris, part of the Moody’s ESG solutions, evaluates the efforts of corporates to pursue a sustainable 
business and attributes a score relative to 38 environmental, social, and governance criteria. 

3. Scenario Analysis 

Scenario modeling is an essential component of the framework and the scenarios should consider both the chronic physical 
and transition effects of climate change: 

» Physical risks arise from increasing severity and frequency of climate and weather-related events, such as sea-level rises 
and floods. 

» Transition risks arise from the adjustment towards net-zero emissions, which will require significant structural changes to 
the economy and technologic advancements. 

Scenario analysis is a key feature of insurer’s risk management and, unsurprisingly, features heavily in an insurer’s approach to 
modeling climate risk. The financial risks posed by climate change are also high on the regulator’s agenda.For example, in the 
UK the Bank of England carries out a biennial stress testing exercise, launched in June 2021. These scenarios built on the 
reference scenarios developed by the Network For Greening the Financial System (NGFS) and the set includes three scenarios: 

» Orderly: early, ambitious action to a net zero CO2 emissions economy 

» Disorderly: action that is late, disruptive, sudden and/or unanticipated 

» Hot house: limited action leads to a hot house world with significant global warming and, as a result, strongly increased 
exposure to physical risks 

 
2 Climate-related financial risk management and the role of capital requirements, PRA, October 2021 
3 Governance and reporting of climate change risk: guidance for trustees of occupational schemes, DWP, June 2021 
4 For more details, please refer to esg.moodys.io/climate-solutions 

http://esg.moodys.io/climate-solutions
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The Moody’s Analytics Climate Pathway Scenario Service, built on our award-winning scenario generation software, can 
translate climate pathways into an insurer’s financial risk variables to help them assess their climate-related risks and 
anticipate the future impact of climate change on asset and liability projections. Climate pathways can be specific to the 
NGFS criteria, Moody’s Analytics economic climate assumptions, or the client’s own input. The climate pathways explore the 
impact of carbon tax and how these costs get passed through in to different industry sectors. As an example, the chart below 
shows the model’s projection of nominal and real rates under the disorderly transition scenario: 

 

4. Optimization 

The investment portfolio optimization will incorporate a third climate dimension, which may be specified as an additional 
objective or there may be additional constraints introduced. The optimization will aim to satisfy the targets specified in the 
first step such as meeting the climate glidepath and targets specified for the allocation to green asset classes and /or ESG 
tilted funds. 

5. Metric analysis 
After reviewing the output from the SAA process, the insurer will consider the practicalities of implementation including the 
transaction costs involved. For example, if significant changes in the sector split of the portfolio are required, then fund 
mandates need to be updated. Where assets are allocated to funds with a specific ESG tilt then benchmark indices will need to 
be established to monitor performance. If the output proposes investment in new asset classes, then approval for the new 
asset classes will likely be required and the time horizon should allow for the necessary governance. 

In addition to analyzing the metrics, it is important to understand the narrative such as, why the climate the pathways have 
impacted the existing portfolio and how the proposed investment strategy meets the objective while still satisfying the 
insurer’s internal hurdle rate. 

https://www.moodysanalytics.com/awards/insuranceerm-americas-esg-software-of-the-year-2020?utm_source=press-release&utm_medium=madc&utm_campaign=ug
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Conclusion 

The insurance industry has an important role to play in the transition to net zero. Towards the end of 2021, there was 
significant momentum behind the transition to a low carbon economy, with many financial institutions announcing their 
plans to become a net zero emissions company. To achieve these plans insurers, now have to align their investment strategy 
with these targets. Climate scenario analysis is likely to feature heavily in the insurer’s approach to strategic asset allocation, 
and to guide their decision around asset class and sector preferences. 

This is part of a series of papers on climate risk topics for insurers. Read the others here: 

» Climate change – The biggest risk multiplier for the insurance industry

» Constructing Climate Pathway Scenarios to Assess the Financial Impact of Climate Risk

» Incorporating ESG into P&C underwriting

» Climate aware Own Risk Solvency Assessment

» Exploring the impact of IFRS Sustainability Disclosure Standards on Insurers

https://www.moodysanalytics.com/-/media/whitepaper/2022/ins_1_climate-change-the-biggest-risk-multiplier
https://www.moodysanalytics.com/-/media/whitepaper/2022/INS_2_Assess-Financial-Impact-of-Climate-Risk
https://www.moodysanalytics.com/-/media/whitepaper/2022/ins_3_esg-for-underwriting
https://www.moodysanalytics.com/-/media/whitepaper/2022/ins_4_climate-aware-orsa
https://www.moodysanalytics.com/-/media/whitepaper/2022/ins_0422_exploring-the-impacts-of-ifrs-sustainability-disclosure-standards-on-insurers


  

 

MOODY’S ANALYTICS          INCORPORATING CLIMATE RISK IN TO STRATEGIC ASSET ALLOCATION BX10962 

 

© 2022 Moody’s Corporation, Moody’s Investors Service, Inc., Moody’s Analytics, Inc. and/or their licensors and affiliates (collectively, “MOODY’S”). All rights reserved. 

CREDIT RATINGS ISSUED BY MOODY'S CREDIT RATINGS AFFILIATES ARE THEIR CURRENT OPINIONS OF THE RELATIVE FUTURE CREDIT RISK OF ENTITIES, CREDIT 
COMMITMENTS, OR DEBT OR DEBT-LIKE SECURITIES, AND MATERIALS, PRODUCTS, SERVICES AND INFORMATION PUBLISHED BY MOODY’S (COLLECTIVELY, 
“PUBLICATIONS”) MAY INCLUDE SUCH CURRENT OPINIONS. MOODY’S DEFINES CREDIT RISK AS THE RISK THAT AN ENTITY MAY NOT MEET ITS CONTRACTUAL 
FINANCIAL OBLIGATIONS AS THEY COME DUE AND ANY ESTIMATED FINANCIAL LOSS IN THE EVENT OF DEFAULT OR IMPAIRMENT. SEE APPLICABLE MOODY’S 
RATING SYMBOLS AND DEFINITIONS PUBLICATION FOR INFORMATION ON THE TYPES OF CONTRACTUAL FINANCIAL OBLIGATIONS ADDRESSED BY MOODY’S 
CREDIT RATINGS. CREDIT RATINGS DO NOT ADDRESS ANY OTHER RISK, INCLUDING BUT NOT LIMITED TO: LIQUIDITY RISK, MARKET VALUE RISK, OR PRICE 
VOLATILITY. CREDIT RATINGS, NON-CREDIT ASSESSMENTS (“ASSESSMENTS”), AND OTHER OPINIONS INCLUDED IN MOODY’S PUBLICATIONS ARE NOT 
STATEMENTS OF CURRENT OR HISTORICAL FACT. MOODY’S PUBLICATIONS MAY ALSO INCLUDE QUANTITATIVE MODEL-BASED ESTIMATES OF CREDIT RISK AND 
RELATED OPINIONS OR COMMENTARY PUBLISHED BY MOODY’S ANALYTICS, INC. AND/OR ITS AFFILIATES. MOODY’S CREDIT RATINGS, ASSESSMENTS, OTHER 
OPINIONS AND PUBLICATIONS DO NOT CONSTITUTE OR PROVIDE INVESTMENT OR FINANCIAL ADVICE, AND MOODY’S CREDIT RATINGS, ASSESSMENTS, 
OTHER OPINIONS AND PUBLICATIONS ARE NOT AND DO NOT PROVIDE RECOMMENDATIONS TO PURCHASE, SELL, OR HOLD PARTICULAR SECURITIES. 
MOODY’S CREDIT RATINGS, ASSESSMENTS, OTHER OPINIONS AND PUBLICATIONS DO NOT COMMENT ON THE SUITABILITY OF AN INVESTMENT FOR ANY 
PARTICULAR INVESTOR. MOODY’S ISSUES ITS CREDIT RATINGS, ASSESSMENTS AND OTHER OPINIONS AND PUBLISHES ITS PUBLICATIONS WITH THE 
EXPECTATION AND UNDERSTANDING THAT EACH INVESTOR WILL, WITH DUE CARE, MAKE ITS OWN STUDY AND EVALUATION OF EACH SECURITY THAT IS 
UNDER CONSIDERATION FOR PURCHASE, HOLDING, OR SALE.  

MOODY’S CREDIT RATINGS, ASSESSMENTS, OTHER OPINIONS, AND PUBLICATIONS ARE NOT INTENDED FOR USE BY RETAIL INVESTORS AND IT WOULD BE RECKLESS 
AND INAPPROPRIATE FOR RETAIL INVESTORS TO USE MOODY’S CREDIT RATINGS, ASSESSMENTS, OTHER OPINIONS OR PUBLICATIONS WHEN MAKING AN 
INVESTMENT DECISION. IF IN DOUBT YOU SHOULD CONTACT YOUR FINANCIAL OR OTHER PROFESSIONAL ADVISER. 

ALL INFORMATION CONTAINED HEREIN IS PROTECTED BY LAW, INCLUDING BUT NOT LIMITED TO, COPYRIGHT LAW, AND NONE OF SUCH INFORMATION MAY BE 
COPIED OR OTHERWISE REPRODUCED, REPACKAGED, FURTHER TRANSMITTED, TRANSFERRED, DISSEMINATED, REDISTRIBUTED OR RESOLD, OR STORED FOR 
SUBSEQUENT USE FOR ANY SUCH PURPOSE, IN WHOLE OR IN PART, IN ANY FORM OR MANNER OR BY ANY MEANS WHATSOEVER, BY ANY PERSON WITHOUT 
MOODY’S PRIOR WRITTEN CONSENT. 

MOODY’S CREDIT RATINGS, ASSESSMENTS, OTHER OPINIONS AND PUBLICATIONS ARE NOT INTENDED FOR USE BY ANY PERSON AS A BENCHMARK AS THAT TERM IS 
DEFINED FOR REGULATORY PURPOSES AND MUST NOT BE USED IN ANY WAY THAT COULD RESULT IN THEM BEING CONSIDERED A BENCHMARK. 

All information contained herein is obtained by MOODY’S from sources believed by it to be accurate and reliable. Because of the possibility of human or mechanical error as 
well as other factors, however, all information contained herein is provided “AS IS” without warranty of any kind. MOODY'S adopts all necessary measures so that the 
information it uses in assigning a credit rating is of sufficient quality and from sources MOODY'S considers to be reliable including, when appropriate, independent third-party 
sources. However, MOODY’S is not an auditor and cannot in every instance independently verify or validate information received in the rating process or in preparing its 
Publications.  

To the extent permitted by law, MOODY’S and its directors, officers, employees, agents, representatives, licensors and suppliers disclaim liability to any person or entity for 
any indirect, special, consequential, or incidental losses or damages whatsoever arising from or in connection with the information contained herein or the use of or inability to 
use any such information, even if MOODY’S or any of its directors, officers, employees, agents, representatives, licensors or suppliers is advised in advance of the possibility of 
such losses or damages, including but not limited to: (a) any loss of present or prospective profits or (b) any loss or damage arising where the relevant financial instrument is 
not the subject of a particular credit rating assigned by MOODY’S. 

To the extent permitted by law, MOODY’S and its directors, officers, employees, agents, representatives, licensors and suppliers disclaim liability for any direct or 
compensatory losses or damages caused to any person or entity, including but not limited to by any negligence (but excluding fraud, willful misconduct or any other type of 
liability that, for the avoidance of doubt, by law cannot be excluded) on the part of, or any contingency within or beyond the control of, MOODY’S or any of its directors, 
officers, employees, agents, representatives, licensors or suppliers, arising from or in connection with the information contained herein or the use of or inability to use any such 
information. 

NO WARRANTY, EXPRESS OR IMPLIED, AS TO THE ACCURACY, TIMELINESS, COMPLETENESS, MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OF ANY 
CREDIT RATING, ASSESSMENT, OTHER OPINION OR INFORMATION IS GIVEN OR MADE BY MOODY’S IN ANY FORM OR MANNER WHATSOEVER. 

Moody’s Investors Service, Inc., a wholly-owned credit rating agency subsidiary of Moody’s Corporation (“MCO”), hereby discloses that most issuers of debt securities 
(including corporate and municipal bonds, debentures, notes and commercial paper) and preferred stock rated by Moody’s Investors Service, Inc. have, prior to assignment of 
any credit rating, agreed to pay to Moody’s Investors Service, Inc. for credit ratings opinions and services rendered by it fees ranging from $1,000 to approximately $5,000,000. 
MCO and Moody’s Investors Service also maintain policies and procedures to address the independence of Moody’s Investors Service credit ratings and credit rating processes. 
Information regarding certain affiliations that may exist between directors of MCO and rated entities, and between entities who hold credit ratings from Moody’s Investors 
Service and have also publicly reported to the SEC an ownership interest in MCO of more than 5%, is posted annually at www.moodys.com under the heading “Investor 
Relations — Corporate Governance — Director and Shareholder Affiliation Policy.”  

Additional terms for Australia only: Any publication into Australia of this document is pursuant to the Australian Financial Services License of MOODY’S affiliate, Moody’s 
Investors Service Pty Limited ABN 61 003 399 657AFSL 336969 and/or Moody’s Analytics Australia Pty Ltd ABN 94 105 136 972 AFSL 383569 (as applicable). This document 
is intended to be provided only to “wholesale clients” within the meaning of section 761G of the Corporations Act 2001. By continuing to access this document from within 
Australia, you represent to MOODY’S that you are, or are accessing the document as a representative of, a “wholesale client” and that neither you nor the entity you represent 
will directly or indirectly disseminate this document or its contents to “retail clients” within the meaning of section 761G of the Corporations Act 2001. MOODY’S credit rating 
is an opinion as to the creditworthiness of a debt obligation of the issuer, not on the equity securities of the issuer or any form of security that is available to retail investors. 

Additional terms for Japan only: Moody's Japan K.K. (“MJKK”) is a wholly-owned credit rating agency subsidiary of Moody's Group Japan G.K., which is wholly-owned by 
Moody’s Overseas Holdings Inc., a wholly-owned subsidiary of MCO. Moody’s SF Japan K.K. (“MSFJ”) is a wholly-owned credit rating agency subsidiary of MJKK. MSFJ is not a 
Nationally Recognized Statistical Rating Organization (“NRSRO”). Therefore, credit ratings assigned by MSFJ are Non-NRSRO Credit Ratings. Non-NRSRO Credit Ratings are 
assigned by an entity that is not a NRSRO and, consequently, the rated obligation will not qualify for certain types of treatment under U.S. laws. MJKK and MSFJ are credit 
rating agencies registered with the Japan Financial Services Agency and their registration numbers are FSA Commissioner (Ratings) No. 2 and 3 respectively. 

MJKK or MSFJ (as applicable) hereby disclose that most issuers of debt securities (including corporate and municipal bonds, debentures, notes and commercial paper) and 
preferred stock rated by MJKK or MSFJ (as applicable) have, prior to assignment of any credit rating, agreed to pay to MJKK or MSFJ (as applicable) for credit ratings opinions 
and services rendered by it fees ranging from JPY100,000 to approximately JPY550,000,000. 

MJKK and MSFJ also maintain policies and procedures to address Japanese regulatory requirements. 

http://www.moodys.com/


CLIMAFIN handbook:

pricing forward-looking climate risks under uncertainty

Part 1

Stefano Battistona,d, Antoine Mandelc,d, Irene Monasterolob,d

aUniversity of Zurich and FINEXUS Center
bVienna University of Economics and Business, Austria
cParis School of Economics, Université Paris 1 France
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Abstract

Aligning finance to sustainability requires methodologies to price forward-looking climate

risks and opportunities in financial contracts and in investors’ portfolios. Traditional ap-

proaches to financial pricing models cannot incorporate the nature of climate risk (i.e. deep

uncertainty, non-linearity and endogeneity), and of financial risks (interconnectedness and

complexity). To fill this gap, we developed a transparent, science-based framework to as-

sess and price climate financial risks under uncertainty, the CLIMAFIN tool. It embeds

climate scenarios adjusted financial pricing models (for equity holdings, sovereign and cor-

porate bonds), climate scenarios conditioned risk metrics (such as the Climate Spread and

the Climate Value-at-Risk). These allow us to introduce forward-looking climate risk sce-

narios in the valuation of counterparty risk, in the probability of default and largest losses

on investors’ portfolios. This handbook is intended to support investors in the assessment

of forward-looking climate risks in their portfolios and in the identification of portfolios’ risk

management strategies, and financial supervisors in the analysis of risk exposures that could

have implications for systemic risk and in the design of prudential measures to mitigate such

risk.

Keywords: CLIMAFIN, forward-looking climate transition risk, climate deep uncertainty,

financial contracts, financial pricing models, Climate Spread, Climate Value at Risk

?This is a first version of a work in progress. The aim is report and discuss in a single document the
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[The aim of this report is to discuss in a single document the results of works on the pricing

of climate risk in financial instruments and markets that have been published in form of

articles and working papers. As such, it should be quoted whenever used as ”Battiston S.,

Mandel A., Monasterolo I. (2019): CLIMAFIN handbook: pricing forward-looking climate

risks under uncertainty”. Working Paper, Climate Finance Alpha.]

1. Introduction

There is growing awareness among academics, practitioners and financial supervisors

of the fact that unmitigated climate change and a disorderly transition to a low-carbon

economy could affect the profitability of several economic activities and cause relevant losses

for investors’ portfolios (Carney 2015, NGSF 2018, Battiston et al. 2017).

Nevertheless, recent research highlighted that investors are not pricing yet climate-related

risks in their portfolios (Monasterolo and de Angelis 2019, Morana and Sbrana 2019, Ramelli

et al. 2018).

Since financial investors take decisions based on what they can measure, and their de-

cisions do influence (and are influenced by) the benchmark in their respective markets,

evaluating climate risks in financial contracts is crucial from an investors’ risk management

perspective, and for financial supervisors whose mandate is about preserving financial sta-

bility.

Main barriers that investors face in pricing climate-related financial risks are represented

by (i) the nature of climate risks (physical, transition), (ii) the poor understanding of existing

classifications to assess financial exposures to climate risks, (iii) the need to move from the

backward-looking nature of traditional financial risk assessment and of investors’ benchmarks

to the forward looking nature of climate risks, and (iv) the integration of forward looking

climate shocks in financial risk metrics and management approaches.

In this handbook, we show how the CLIMAFIN tool can guide a risk averse investor in in-

tegrating climate risks considerations in her counterparty credit and financial risk valuation

results of a stream of scientific works on the pricing of climate risk across financial instruments and markets.
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and probability of default, including new climate scenarios adjusted risk metrics (Climate

Value-at-Risk, Climate Spread). CLIMAFIN provides a transparent, science-based frame-

work to assess investors’ exposure to forward-looking climate risks and to price climate risks

in the value of their financial contracts and portfolios. This allows investors to align to

the recommendations of the Network for Greening the Financial System (2019) on climate

financial risk assessment and climate stress-testing, and financial regulators to identify the

drivers of climate-related financial instability and to design prudential measure to mitigate

it.

In this first part of the handbook we focus on the following CLIMAFIN’s characteristics:

• The information set that a rational risk averse investor should use to assess financial

risk under climate transition scenarios;

• The forward-looking climate transition risk scenarios and shocks and the transmission

channels through which they hit economic activities (low-carbon and carbon-intensive)

and firms’ profitability;

• The climate financial pricing models for climate scenarios adjusted counterparty risk

valuation for individual contracts (equity, corporate and sovereign bonds, loans);

• Climate scenarios conditional financial risk metrics such as the Climate Value at Risk

(Battiston et al. 2017) and the Climate Spread (Battiston and Monasterolo 2019);

• Climate Stress-testing models (see Battiston et al. 2017, Roncoroni et al. 2019). The

presentation of the Climate Stress-test and its applications to investors’ portfolios is

included in the second part of this Handbook.

The CLIMAFIN Handbook is organized as follows. Section 2.3 describes the information

set of a risk averse investor that aims to minimize climate risks in her portfolio. Section 3

describes the climate scenarios adjusted financial risk evaluation model for equity holdings.

Section 4 and Section 5 present the climate scenarios adjusted credit risk evaluation models

for corporate and sovereign bonds respectively. Section 6 introduces the Climate Spread

while Section 7 introduces the Climate Value-at-Risk.
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2. Model component, investors’ information set and risk management strategy

2.1. Climate risk: not a Normal type of risk for financial actors

In this section we introduce the concepts of climate physical and transition risks, and

we discuss the main differences between the properties of climate risks and of the risks

usually considered in finance.

2.1.1. Climate physical risks

Climate change physical risk refers to risk of damages to physical assets, natural capi-

tal and/or human lives resulting into output losses, as a result of climate induced weather

events. Based on the available scientific information, the Greenhouse Gases (GHG) emis-

sions trajectory currently followed by UN countries would lead to severe socio-economic

consequences, resulting in particular from sea level rise, icesheet and permafrost melting,

and the increased frequency of extreme weather events such as drought, floods and heat-

waves. These events will have economic consequences both at the firm and macroeconomic

level, and include:

• The destruction of immobilized productive capital, with negative implications on firms’

profitability, investments, employment and eventually on Gross Domestic Product

(GDP) (Burke et al. 2015, 2018, Hsiang et al. 2017);

• Drops in properties’ values (see e.g. the example of luxury coastal properties in Florida

and South Carolina, that would eventually become not insurable anymore, US 4th

Climate Assessment Report), with implications for banks and insurance companies;

• Loss of arable land productivity, with implications on food commodities’ production

and prices, and thus on famine and social unrest, and eventually the relocation of

millions of people currently living in areas particularly exposed to climate physical

risks, even within developed countries (FAO SOFA 2018, IPCC 2014).
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2.1.2. Climate transition risks

Climate change transition risk refers instead to the risk arising from sudden assets’ values

adjustments and repricing as a result of coordination of expectations of market participants

about the implementation of climate policies (e.g. a carbon tax, or the revision of the

Emissions Trading Scheme (ETS) scheme in Europe). These adjustments are expected

to negatively impact the value of fossil fuels related assets (the so-called carbon stranded

assets, see e.g. Leaton et al. 2012). They are also expected to impact indirectly the

value of assets in other sectors that use fossil fuel energy and electricity as a production

input, or that are involved in the value chain of companies that do it, thus generating

cascading losses. In addition, in today’s interconnected business and financial sectors, a

shock generated from an economic activity could cascade on the investor who is exposed

to the financial contracts issued by that activity. However, the sign of the impact can be

positive or negative, depending on whether firms are able to anticipate the policy and adapt

their business to alternative sources of energy (e.g. in certain scenarios, renewable-based

utilities or energy-intensive processes that manage to diversify their energy sources away

from fossil-fuels are expected to grow in market share).

Complexity of climate risks and limits of traditional financial pricing models

Climate risks are characterised by deep uncertainty, non-linearity, fat tailed distributions,

path-dependency and endogeneity. These characteristics, that we briefly outline below,

cannot be easily embedded in traditional financial pricing models that stand on assumptions

of Normally distributed shocks, perfect information, complete markets, absence of arbitrage

and short term valuation.

Non-linearity. Climate shocks probability distribution can’t be inferred from historical

data being forward-looking in nature. In addition, recent studies showed that past temper-

ature data are not normally distributed. For instance, Western European summer of 2003

was 5.4 above mean temperature for 1864-2000. Within a Normal distribution, 5.4 summer

would occur once every 30 million years. But Eastern Europe had similar heat wave in

2010. Thus, if such events happen every 7 years, temperatures are not normally distributed

(Ackerman 2017).
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Deep uncertainty. The forecasts of climate change and its impact on humans and

ecosystems contain irreducible uncertainties because of the nature of the earth system, in-

cluding the presence of tail events (Weitzman 2009) and tipping points (Solomon ea. 2009),

which cannot be overcome by model consensus (Knutti 2010). This means that largest

shocks expected to occur in mid-to long-term but their exact localization and magnitude is

unknown.

In addition, uncertainty characterises the costs and benefits estimates in each scenario

that vary substantially with the assumptions on agents’ utility function, future productivity

growth rate, and intertemporal discount rate. These assumptions, sometimes implicit or

given for granted in the mathematical treatment of economic agents’ behavior, ultimately

imply fundamental philosophical and ethical considerations (Nordhaus 2007; Stern 2008,

Ackerman et al. 2009, Stern 2013, Pyndick 2013).

Complexity. Even if costs and benefits could be predicted precisely, the likelihood of

the realization of a given pathway depends on the assumptions on agents’ rationality and on

the ability of countries to coordinate on international policies. The political economy of the

actors involved is complex and plays a fundamental role. However, this is not accounted for

by the literature on the social cost of carbon nor by the literature on Integrated Assessment

Models (IAMs). Endogeneity of risk. On the one hand, the likelihood of achieving climate

targets and the mitigation of climate risks in financial markets and investors’ portfolios

depends from the orderly introduction of climate policies and the scaling up of financial

investments in low-carbon sectors. However, the endogeneity between uncertainty of policy

decisions and annoucements and investors’ expectations on the financial risk deriving from

the policies generates the possibility of multiple equilibria. In this context, a rational agent

cannot identify a preferred investment strategy.

In this context, the standard approach to financial risk analysis, consisting of: identifying

the most likely scenario, computing expected values, and estimating financial risk based on

backward looking metrics and historical values of market prices, is not an adequate approach

(Battiston 2019).
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2.2. Model components

We define and implement a model that is composed of the following:

• Definition of the investor’s portfolio of risky financial contracts;

• A discussion on the nature of climate risks considered;

• Macro-economic trajectories and climate transition risk at issuer/counterparty level;

• A valuation model to price equity risk;

• A structural model to price credit risk;

• A model of forward-looking climate transition risk using the Climate Policy Shock

Scenarios from the Investor Information Set

• The definition of Climate Spread and Climate VaR

• The assessment of impact of Climate Policy Shocks on bonds default probability, Cli-

mate Spread, Portfolio Climate Value at Risk (VaR).

2.3. Investors’ information set

Building on Battiston and Monasterolo (2019) we consider a risk averse investor that aims

to assess the exposure of her portfolio to forward-looking climate transition risk in a context

of incomplete information and deep uncertainty (Keynes 1973, Knight 1921, Greenwald and

Stiglitz 1986, Nalebuff and Stiglitz 1983).

We identify an Information Set relevant to climate transition risk, suitable for investor

that does not necessarily have a greening mandate but who does need to implement a finan-

cial valuation (risk) of its portfolio. We want to identify the properties of portfolio’s risk

management strategy accounting for investor’s risk aversion, counterparty risk, Probabil-

ity of Default (PD), Spread and Value-at-Risk (VaR) adjusted for forward-looking climate

transition risk scenarios. In this context, implementing the strategy requires to adjust the

traditional Probability of Default (PD), the Spread and VaR, conditional to forward-looking

Climate Policy Shock Scenarios (i.e. happening in the future).
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The information set of the risk averse investor is composed of:

• A set of Climate Policy Scenarios Pl corresponding to GHG emission reduction target

across regions (B = Business-as-Usual):

ClimPolScen = {B,P1, ..., Pl, ..., PnScen}

• A set of economic output trajectories for each country j, sector k under each scenario

Pl, estimated with each climate economic model Mm:

EconScen = {Y1,1,1,1, ..., Yj,k,Pl,Mm,...}

• A set of forward-looking Climate Policy Shock Scenarios (disorderly transition B →

Pl):

TranScen = {B → P1, ..., B → Pl, ..., B → PnScen}

• A set of Climate Policy Shocks on economic output for j, k under transition scenario

B → Pl, estimated with model Mm

EconShock = {..., Yj,k,Pl,Mm − Yj,k,B,Mm

Yj,k,B,Mm

, ...}

By defining the information set we want to:

• Include the current available knowledge about transition risk factors related to climate

change and climate change mitigation that can affect the investment value. We con-

sider the climate policy scenarios developed by the International Scientific Community

and reviewed by the Intergovernmental Panel on Climate Change (IPCC). Then, we

translate the economic trajectories for both low-carbon and carbon-intensive economic

activities obtained from climate economics models (e.g. Integrated Assessment Models

(IAM) as well as other models) into climate policy shocks on the Gross Value Added

(GVA) of those activities and firms.
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• Cover a time horizons that is relevant both for investment strategies and for the low-

carbon transition, and ideally covers several decades, from 2020 to 2050 and possibly

beyond that.

• Include varying investor’s risk aversion preferences. We consider multiple scenarios

that account for different risk aversion and allow to go beyond the inadequate notion

of “most likely scenario” and include the notion of ”worst case scenarios”.

• Compatible with the hypothesis of the possibly incomplete information and incomplete

markets (Greenwald and Stiglitz 1986), the economic shocks led by a disorderly low-

carbon transition allow to model to be temporary out-of-equilibrium.

• Be relevant for institutions with a focus on financial risk valuation and financial sta-

bility mandate (thus, we do not assume financial actor’s mandate beyond risk).

2.4. Investors’ Climate Risk Management Strategy

The investor risk management strategy is based on the VaR and aims to minimize climate

risk in its portfolio by:

• Accounting for investor-specific risk aversion level (i.e. varying subsets of investor

information set InfoSetClimRisk).

• Accounting for counterparty risk adjusted for climate policy shock scenarios (e.g.

probability of default, spread)

• Accounting for metrics relevant for financial regulation e.g. risk measure such as VaR.

In this context, the risk averse investor aims to minimize her Climate Value-at-Risk

(Climate VaR) under the investor information set InfoSetClimRisk i.e. the forward-looking

climate policy shocks, the scenarios of economic trajectories for low-carbon and carbon-

intensive economic activities’ GVA, and the climate models (e.g. the IAM) used to estimate

the economic shock on GVAs.
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The Climate VaR Management Strategy that aims to minimize the worst-case losses of

the portfolio across the forward-looking Climate Policy Shock Scenarios can be written as:

ClimVaRStr = min
Portfolios

{max
Shocks

{VaR(Ptfolio,Adj.PD |Policy Shock)}}

In this context, future asset prices are subject to shocks that depend on the issuer’s

future economic performance, the risk premia demanded by the market, as well as the timing

and magnitude of the climate policy introduced and the outcome of the energy transition

of individual firms and countries. The investor considers different feasible climate policy

scenarios (but has no information on the probability associated) for which she can calculate

the impacts (negative or positive) on the market share of carbon-intensive or low-carbon

economic activities and firms.

The investor is subject to incomplete information on her (and competitors’) exposure to

risk stemming from a disordered transition from a climate policy scenario to another one,

uncertainty on the outcome of the firms and country’s energy transition, and no information

on the probability distribution. Thus, her risk management strategy is to consider a set of

feasible climate transition scenarios that her portfolio should withstand, and then compute

the VaR conditional to those scenarios.

2.5. Climate policy scenarios

With the aim to assess the impact of a disorderly low-carbon transition, i.e. forward-

looking climate policy shocks on the value of contracts of the investor’s portfolio, we consider

the climate policy scenarios of the IPCC 2014 report, described in .
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(Source: IIASA, Kriegler et al. 2013) Characteristics of the mild and tight climate policy

scenarios considered in the LIMITS project

In particular, we select four climate policy scenarios aligned to the 2◦C target from the

LIMITS database of IAM and a baseline of no climate policy, described in Table 1. We

use the LIMITS project database (Kriegler et al. 2013) to compute the trajectories of the

market shares for several variables including the output of primary energy from fossil fuel

and the output of secondary energy in the form of electricity both from fossil fuel sources

and renewable energy sources. Then, we estimate the effect of the introduction of market-

based climate policies (i.e. a carbon tax). The two emissions concentration targets chosen

under milder and tighter climate policy scenarios (i.e. 500 and the 450 ppm), determine the

amount of CO2 to be emitted in the atmosphere by 2100 consistently with the 2◦C aligned

IPCC scenarios (IPCC 2014). The 500 and 450 ppm scenarios are associated to a probability

of exceeding the 2◦C target by 35-59% and 20-41% respectively (Menishausen et al. 2009).

Thus, the choice of specific emissions concentration targets could be considered as a proxy

for the stringency of the global emission cap imposed by potential climate treaty.

A change in climate policy (i.e. in the value of the carbon tax every 5-years time step)

implies a change in the sectors’ macroeconomic trajectory, and thus a change in the market

share of primary and secondary energy sources. The shock in the market share could differ
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Climate policy shock 
scenario 

 

Climate 
policy 

scenario 
 

     Scenario Class Target by 2020   Target between 2020 and 
2100 

Not applicable Base No climate policy None None 

Disorderly switch from Base 
to RefPol-450 

RefPol-450 Countries 
Fragmented, 

Immediate Action 

Lenient 450 ppm: 2.8W/m2 in 2100, 
overshoot allowed 

Disorderly switch from Base 
to StrPol-450 

StrPol-450 Countries 
Fragmented, 

Immediate Action 

Strengthened 450 ppm: 2.8W/m2 in 2100, 
overshoot allowed 

Disorderly switch from Base 
to RefPol-500 

RefPol-500 Countries 
Fragmented, 

Immediate Action 

Lenient 500 ppm: 3.2W/m2 in 2100, 
overshoot allowed 

Disorderly switch from Base 
to StrPol-500 

StrPol-500 Countries 
Fragmented, 

Immediate Action 

Strengthened 500 ppm: 3.2W/m2 in 2100, 
overshoot allowed 

 

Table 1: Selected climate policy scenarios from the LIMITS database. The table shows the four climate

policy scenarios considered (plus the Base scenario), i.e. RefPol-450, RefPol-500, StrPol-450, StrPol-500.

12

Electronic copy available at: https://ssrn.com/abstract=3476586



in sign and magnitude depending on the scenario S, the region R, the model M used and

the sector S. We consider a shock occurring in 2030, affecting the market shares of the

economic activities and firms (low-carbon and carbon-intensive, see Figure 2.1) to which the

investor’s portfolio is exposed via financial contracts (equity, corporate and sovereign bonds,

loans).

2.6. Climate Policy Shocks

In the model,the climate and energy targets of each countries are assumed to be known

by the investor. These targets translate in a share of energy and electricity produced by

renewable energy sources.

However, for each country, the investor does not known if and when the country will

introduce climate policies to foster the alignment of the economy to its targets. She also

does not know along which economic trajectory, which means, the change in energy mix

of the economy that leads to a change in the market share of different renewable/fossil

sub-sectors of the economy and thus the revenues of the firms in those sectors.

The investor does not have priors on the probability of these events and assumes that if

a country implements the low-carbon transition, then it does so by switching from its BAU

scenario to one of the climate policy scenarios described by the scientific community (i.e.

the energy and economic scenarios based on IEA roadmap and IPCC climate scenarios, see

Kriegler et al. 2013, IPCC 2014). This assumption is motivated by the fact that there is

policy and scientific consensus on these climate policy scenarios and their trajectories.

The transition of a country from the Business as Usual B to a climate policy scenario P

can occur orderly or disorderly.

Orderly, means here that the introduction of a climate policy is carried out timely

enough for the country to achieve its renewable energy targets and with a public and pre-

dictable schedule. In this scenario, investors can anticipate it and discount the effects on

asset prices of the economic activities affected. For instance, the phasing out of coal-based

electricity plants is announced to happen with a certain schedule, which is maintained and

the market players know that it will be maintained. Thus, they can discount the future
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value of investments in assets that have these plants as underlying, accordingly, and they

can price the risk associated to their exposure to financial contracts related to those plants.

In contrast, disorderly means that the transition is carried out at a schedule that is

not predictable by markets and investors, e.g. the government introduces the climate policy

in a late and sudden way, or retroactively revise its policies. In this case, we assume that

the climate policy shock stemming from a disordered transition is not anticipated (despite

potentially expected) by the investor. This is due to the backward looking nature of the

benchmark considered by asset managers and on which asset managers’ performance (and

thus remuneration) is assessed. It is common knowledge that asset managers take investment

decisions based on the benchmark in their respective markets (Greenwald and Stiglitz 1986).

Recent research shows that the market benchmark is carbon intensive (see e.g. Battiston

and Monasterolo 2019 for the case of corporate bonds market benchmark against which the

European Central Bank’s corporate bonds purchase (CSPP) has been assessed).

If the investor cannot anticipate the policy shock, then we can assume that she cannot

discount correctly the effect of a climate policy on the change in asset prices of the economic

activities affected by the transition. A failure to anticipate the climate policy shock leads

to a failure in pricing it correctly. In turn, this has potentially severe implications on price

volatility, on portfolio’s performance and financial stability.

It is important to notice that the assessment of the policy shock could be incorrect even

on average across market participants. The motivation for considering this possibility is due

to the fact that several recent policy events (achievement of Paris Agreement, outcome of

US elections, the US withdrawal from Paris Agreement, Brexit, the outcome of 2018 Ital-

ian elections) have been incorrectly forecast by most observers and investors. Nevertheless,

these events and their incorrect pricing are having long-lasting economic effects (see e.g. the

spread on Italy’ sovereign bonds). This implies that these effects could not be priced in by

market participants, and this possibility should be considered in financial pricing models

of sovereign bonds. Since the experience shows that the possibility that markets do not

anticipate correctly policy events and their economic impact is material, we assume that the

investor wants to include this possibility among her scenarios. For instance, the phasing out
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of coal based electricity plants could occur late on the policy agenda, behind the initially

announced schedule (e.g. in Poland), in a situation where market players are thinking that

it won’t happen any longer. This implies that they do not discount correctly the future

value of investments in the assets that have these plants as underlying.

Today, the information available to policy makers and market players on the trajectories

of future values of economic sectors’ market share comes mostly from Integrated Assessment

Models (IAM). These are (partial or general) equilibrium models, calibrated on the recent

state of the economy and climate targets, and provide trajectories in which the economy

remains in equilibrium along any given trajectory. Thus, moving from a BAU to a climate

policy scenario implies jumping from an equilibrium condition to another one. Moreover,

the levels of output of the sectors of the economy must be consistent one with each other to

reach again equilibrium conditions. The latter feature means that, for instance, a decrease

in electricity generation based on coal has to be compensated by an increase in generation

based on other sources to be consistent with the internal demand. This, in turn, affects the

relative prices. Each trajectory is also consistent with a specific target in terms of GHG

by 2050, and with a specific scenario on the status of international coordination on climate

efforts. The trajectories integrate also the estimates of climate change damages to physical

assets in the economy by means of a climate module. There exists only a limited number (less

than 10) of established IAM in the world, run by independent and internationally recognized

scientific institutions. The models consider a common set of internationally agreed climate

policies and emissions scenarios but differ in the way they define certain output variables

and in the data used for the calibration (e.g. Kriegler et al. 2013). There is a consensus

in considering the IAMs’ set of trajectories as the information set available today about the

future economic impact of climate change. Nevertheless, it is increasingly recognized that

such models have some limitations (e.g. in the computation of the trajectories and outputs)

that relate to the model structure and behaviour, and can affect the policy relevance of the

outcomes (see e.g. Battiston and Monasterolo 2018).
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2.7. Composition of the economy

We consider n countries j whose economy is composed of m economic sectors S. Eco-

nomic activities included in S are based on a refined classification of the Climate Policy Rel-

evant Sectors (CPRS), which was originally introduced in Battiston et al. (2017). NACE

codes (4 digits) are mapped to CPRS (2017), which identifies the main sectors that are

relevant for climate transition risk (fossil-fuel, electricity, energy-intensive, transportation,

buildings). CPRS classification departs from the NACE classification of economic sectors

(at 4 digit level) in so far, it catches the energy and electricity technology of the economic

activity. Its refinement (i.e. CPRS Rev2 2019) provides a more granular classification of the

economic activities in terms of technologies (utility—electricity—wind, solar, gas).

Within S, we focus on the fossil fuel and renewable energy primary and secondary sec-

tors and subsectors, due to the main role thy play in the low-carbon transition via the

energy and electricity supply along the value chain. Firms that compose economic sectors

S are considered as a portfolio of cash flows from fossil fuel and renewable energy activities.

The classification of countries and regions affected by the climate shock is based on the

LIMITS/CD-LINKS aggregation, see Kriegler et al. (2013), McCollum et al. (2018).

Figure 2.1: Climate Policy Relevant Sectors. The figure shows the classification of economic activities by

different degrees of granularity by technology
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In particular, we can define a set of issuers {1, ..., j, ...n} from economic sectors {1, ..., s, ..., nSect},

where the issuers’ GVA in a country is the sum of sectors’ contributions: GVAj =
∑

s GVAj,s

2.8. Impact of climate policy shock on economic activities’ GVA and profitability

We consider the contribution of issuer j’s to the sector S’s GVA and fiscal assets and how

this can be affected by changes in its economic performance, either negatively or positively.

We then relate the performance of the economic activity to the change in its market share

as a result of a disorderly climate policy transition scenario.

In a disorderly transition, a climate policy shock affects the performance of issuers in

sectors S via a change in economic activities’ market share, cash flows and profitability,

eventually affecting the GVA of the sector. The climate policy shock is calculated at the

sector, country and regional level. The country’s GVA composition is available at NACE

2 digit level from official statistics (e.g. Eurostat). Negative shocks result from the policy

impact on the GVA of sectors based on carbon-intensive (i.e. fossil fuels) technologies, while

positive shocks result from the impact on the GVA of sectors based on low-carbon (i.e.

renewable energy) technologies.

We consider macroeconomic trajectories of output over time for sector s consistent with

climate policy scenario P ∈ {..., PRefPol, P 450, ...} The Climate Policy Shock Scenario

consists in the transition from a trajectory Business-as-usual (B) to trajectory with climate

policy P . Forward-looking climate policy shock arises from investors that are not fully

anticipating the introduction and impact of the climate policy (as an analogy, we can consider

the introduction/impact of Brexit). We focus on shocks on the GVA of 3 Climate Policy

Relevant Sectors (CPRS):

• primary energy fossil (PrFos)

• electricity fossil (ElFos) / renewable (ElRen)

uGVA
j (P ) = uGVA

j,PrFos(P )wGVA
j,PrFos(B))+

uGVA
j,ElFos(P )wGVA

j,ElFos(B)) + uGVA
j,ElRen(P )wGVA

j,ElRen(B))
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We assume that a % shock on output ≈ % shock on GVA, uGVA
j , for each sector of j

u
GVA
j (P ) =

GVAj(P ) − GVAj(B)

GVAj(B)
=

∑
s

(
GVAj,s(P ) − GVAj,s(B)

GVAj,s(B)

GVAj,s(B)

GVAj(B)
)

u
GVA
j (P ) =

∑
s

(u
GVA
j,s (P ) w

GVA
j,s (B))

where then uGVA
j,s (P ): GVA shock on sector s; wGVA

j,s (B): share of GVA of sector s

From an accounting perspective, at the level of an individual firm, it holds true that a

decrease (increase) x in the market share translates in a relative decrease (increase) x in its

sales, as long as market conditions are the same1. Indeed, a body of empirical literature has

found a strong and positive relation between firms’ market-share and profitability (Szyman-

ski et al. 1993; Venkatraman et al. 1990). At similar argument can be made at the level

of countries’ economic sectors, such as their utility sectors. A decrease (increase) x in the

market share in a given region of countries competing on the energy market translates in a

relative decrease (increase) x in its sales. As a result, there is a decrease (increase) in the

tax revenues that the sovereign issuer j collects from the firms operating in that sector in

its country.2 In the case of the energy and utility sectors, this argument is corroborated by

the fact that ownership is very concentrated in both fossil and renewable business. Indeed

in most EU countries there is just a major energy firm (e.g. OMV in Austria, ENI in Italy)

and one major utility firm.

The net effect of the change in energy mix on the profit of a given sector depends on

the pre-shock energy mix and the post-shock energy mix. For instance, sector Sj1 will have

a larger post-shock profit compared to Sj2 , denoted as π(Sj1 , P ) > π(Sj2 , P ), because it

starts from a larger pre-shock share of renewable-based power (everything else being equal).

Moreover, Sj2 ’s profit (summed over the two business lines) could decrease after the policy

1More precisely, it holds under the conditions that total demand and prices remain unchanged in the

period considered, and that returns to scale are constant.
2Notice that while the tax rate may vary in principle with firms’ size (e.g. total level of pre-tax profits),

in many cases large firms are subject to similar tax rates than smaller firms. Hence, agents assume that an

x% drop in firm’s profits implies the same x% drop in revenues.
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shock, denoted as π(Sj2 , P ) < π(Sj2 , B), if it is not possible for Sj2 to more than compensate

on the renewable business line the losses on the fossil business line.

The final impact of the climate policy shock on the net fiscal assets of an issuer j depends

not only on the tax revenues from sector Sj and thus on its profit π(Sj, P ), but also on the

expenses that the issuer incurs. If we consider j as a sovereign issuer, the consideration

discussed earlier in this section lead us to make the assumption that a relative change in the

market share of sector S within the country j, implies a proportional relative change in the

net fiscal assets of issuer j from sector S.

In the case of a sovereign issuer, we define the net fiscal assets related to sector S,

denoted as Aj(S), as the difference between accrued fiscal revenues from sector S and public

investments and subsidies granted by j to the same sector.

The impact of the market share shock (resulting from the policy shock P ) on net fiscal

assets of sector S is thus assumed to imply a change ∆Aj(S, P,M), estimated under model

M , as follows:

∆Aj(S, P,M)

Aj(S)
= χS uj(S, P,M),

where χ denotes the elasticity of profitability with respect to the market share.

The forward-looking trajectories of sectors’ market shares are taken from the LIMITS

IAM scenario database (Kriegler ea. 2013), considering combinations of IAM M and four

climate policy scenarios P , characterized by different Greenhouse Gases (GHG) emissions

targets and way to achieve them 3.

Because, in general, the policy shock affects at the same time several sectors in the

economy of the issuer j, we have to consider the total net effect on the issuer’s net fiscal

assets as follows:

∆Aj(P,M)

Aj
=

∑
S

∆Aj(S, P,M)

Aj(S)

Aj(S)

Aj
=

∑
S

χS uj(S, P,M)
Aj(S)

Aj
,

3See the LIMITS database documentation for more details https://tntcat.iiasa.ac.at/LIMITSDB/

static/download/LIMITS_overview_SOM_Study_Protocol_Final.pdf
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In principle, in our approach, the elasticity coefficient could be estimated empirically for

the specific sectors of the sovereign issuers in the portfolio. In this work, the data to carry

out this estimation was not available. Being our goal to provide an estimation of the upper

bounds of the magnitude of the shocks due to a given climate policy scenarios P (see section

5), where the shock is transmitted to the value of the sovereign bond via the change in

sectors’ market share, GDP and fiscal assets, we have assumed a value of χ constant and

equal to 1 (typical empirical values range between 0.2 and 0.6).

3. Pricing climate risk in equity holdings

In this section, we focus on the risk-neutral valuation of equity holdings in sectors subject

to potential forward-looking climate policy shocks. We first derive the valuation formula in

the case where the timing and the characteristics of climate policy shock shock are known.

Then, we discuss how to extend the valuation model in the case in which the timing and

magnitude of the climate policy shock are subject to further uncertainty.

In the valuation model, t0 = 0 denotes the time at which valuation is carried out and E

denotes a generic equity contract. In absence of climate policy, we assume that all relevant

information is captured by expected future flow of dividends (div(t))t≥t0 and, following

Gordon’s formulation (Gordon 1959), we further consider that dividends grow at a constant

rate g(B) so that for all t ≥ t0, div(t+ 1) = (1 +g(B))div(t). Denoting by r the cost of risky

capital, the value of equity is then determined as the net present value of future dividends,

that is:

V B,t0
E =

+∞∑
t=1

(1 + g(B))tdiv(t0)

(1 + r)t
=

div(B)(1 + g(B))

r − g(B)
(1)

where div(B) = div(t0).

We then consider a situation where a climate policy shock is assumed to occur at time t∗

following which the dividend is assumed to shift to div(P ) and the growth rate of dividends

to g(P ) where P identifies a specific climate policy scenario. The value of equity is then
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determined as

V P,t∗

E =
t∗∑
t=1

(1 + g0)
tdiv(B)

(1 + r)t
+

+∞∑
t=t∗+1

(1 + g(P ))t−t
∗
div(P )

(1 + r)t
(2)

or equivalently

V P,t∗

E = (1− 1 + g0
1 + r

)t
∗−t0 div(B)(1 + g(B))

r − g(B)
+

1

(1 + r)t∗
div(P )(1 + g(P ))

r − g(P )
(3)

In particular, if the climate policy shock occurs at valuation time, i.e. t∗ = t0, we obtain

V P,t0
E =

div(P )(1 + g(P ))

r − g(P )
(4)

In a climate policy scenario P , it is expected that div(P ) and g(P ) decrease for carbon-

intensive economic activities and increase for low-carbon economic activities. In sectors such

as energy production, where climate policy shocks induce substitution from high-carbon to

low-carbon sources, these impacts can be directly inferred from market shares under the

assumption that (i) the growth rate of total revenues in the sector (high-carbon plus low-

carbon) remain constant, (ii) the dividend to revenue ratio is similar across subsectors and

(iii) dividends are proportional to market share. Indeed, one then has g(P ) = g(B), and

using the notations of the preceding section, one has (up to a discount factor if t∗ > t0):

div(P ) =
mE(S, P,M)

mE(S,B,M)
div(B). (5)

We further highlight two basic applications of our equity valuation methodology:

• The discontinuous change of valuation in the case of a disorderly transition occurring

at time t∗ is given by V B,t∗

E − V P,t∗

E .

• Given a probability distribution P on the time of occurrence and/or the impact of the

policy scenarios, one can compute the expected value and the value-at-risk or order

α associated to an equity contract respectively as
∫
V P,t0
E dP(P, t0) and X such that

P(V P,t0
E ≥ X) = 1− α.
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4. Pricing climate transition risk in corporate bonds

We define here a model for counterparty valuation in the case of a corporate bonds issuer

and we define the default conditions and default probability.

4.1. Model for corporate bonds valuation

We consider a risky (defaultable) bond of corporate issuer j, issued at t0 with maturity

T . The bond value at T , with R bond Recovery Rate (i.e. % of notional recovered upon

default), and LGD Loss-Given-Default (i.e. % loss) can be defined as:

vj(T ) =

Rj = (1− LGDj) if j defaults (with prob. qj)

1 else (with prob. 1− qj)

The expected value of bond’s payoff can then be written as:

E[vj] = (1− qj) + qj Rj = 1− qj (1−Rj) = 1− qj LGDj

The bond price v∗j is equal to the bond discounted expected value, with yf risk-free rate.

The price defines implicitly the yield yj of bond j (under risk neutral measure) as follows:

v∗j = e−yf T E[vj] = e−yf T (1− qjLGDj) = e−yj T

Finally, the bond spread can be defined as: sj = yj − yf , with e−sj T = 1− qj LGDj

An useful fact about spread is that:

sj ≈
1

T
qj(1−Rj) =

1

T
qj LGDj(for small sj)

4.2. Corporate bond default conditions

We consider the corporate bond issuer i balance sheet: Aj(t0), Aj(T ) asset, with t0 issue

time andT maturity; Lj(T ) liability.

The default condition (e.g. following Merton 1974) reads as
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Aj(T ) = Aj(t0)(1 + ηj(T )) < Lj(T )

with ηj(T ) ∈ R: idiosyncratic shock (e.g. firm j productivity), φ(η1, ..., ηj, ηn) joint

probability distribution (possibly correlated)

We add the climate policy shock ξj on j’s assets (as a “jump” up/down in the prob-

ability of default), assuming that the idiosyncratic shock ηj and the policy shock ξj are

independent.

We can then define the new default condition as:

Aj(T ) = Aj(t0)(1 + ηj(T ) + ξj(P )) < Lj(T )

⇐⇒ ηj(T ) ≤ θj(P ) = Lj(T )/Aj(t0)− 1− ξj(T, P )

with θj(P ) default threshold under scenario P and ξj(P ) the climate policy shock

can be either positive or negative (given the composition of j: ξj(P ) > −1), and possibly

correlated across j.

4.3. Corporate default probability

We can define the default probability (PD) qj of issuer j under Climate Policy Sce-

nario P , with φP (ηj) being the probability distribution of the idiosyncratic shock ηj, ηinf

lower bound of distribution support:

qj(P ) = P(ηj < θj(P )) =
∫ θj(P )

ηinf
φP (ηj) dηj, We introduce now a proposition of the

PD adjustment ∆ under the climate policy shock following the intuition that frequent small

productivity shocks across time and firms occur in a similar way with/without climate policy

shock. Then, the policy shock shifts the probability distribution of the small productivity

shocks and thus the default probability of j.

We introduce the following assumption: the idiosyncratic shocks are independent from

policy shock, i.e. conditional to occurrence of ξj.

We obtain that the PD adjustment under policy shock scenario is:

∆qj(P ) = qj(P )− qj(B) =
∫ θj(P )

θj(B)
φ(ηj) dηj, with θj(P ) = θj(B)− ξj(P )
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Then, assuming that the idiosynchratic shocks are independent from the policy shock,

and that the policy shock on assets is proportional to shock on GVA via elasticity ξj =

χj u
GVA
j (P ), we obtain that the adjustment ∆qj(P ) in default probability of j under Cli-

mate Policy Shock Scenario:

• Increases with GVA shock magnitude |uGVA
j (P )| if uGVA

j (P ) < 0, and decreases vicev-

ersa (under mild condition on φ);

• Is proportional to the GVA shocks on climate relevant sectors (in the limit of small

Climate Policy Shock):

∆qj(P ) ≈ −χj (uGVA
j,PrFosw

GVA
j,PrFos + uGVA

j,ElFosw
GVA
j,ElFos + uGVA

j,ElRenw
GVA
j,ElRen).

Climate policy shock corporate bond value adjustment

Being ∆v∗j defined as the change in the discounted expected value of the corporate bond,

v∗j , conditional to a Climate Policy Shock Scenario B → P

∆v∗j = v∗j (qj(P )− v∗j (qj(B)) = −e−yf T ∆qj(P )LGDj

Proposition: conditional to policy shock scenario B → P , and assuming everything else

the same regarding the issuer’s balance sheet, then the corporate bond value adjustment

∆v∗j (P ):

• Is negative and increases with magnitude of policy shock |ξj(P )| if ξj(P ) < 0;

• Is positive and increases with magnitude of policy shock if ξj(P ) > 0, with the con-

straint v∗j ≤ 1;

5. Pricing climate transition risk in sovereign bonds

We define here a model for counterparty valuation in the case of a sovereign bond issuer

and we define the default conditions and default probability.
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5.1. Model for sovereign bonds valuation

We consider a risky (defaultable) bond of sovereign j, issued at t0 with maturity T . The

sovereign bond value at T , with R bond Recovery Rate (i.e. % of notional recovered upon

default), and LGD Loss-Given-Default (i.e. % loss) can be defined as:

vj(T ) =

Rj = (1− LGDj) if j defaults (with prob. qj)

1 else (with prob. 1− qj)

The expected value of bond’s payoff can be defined then as:

E[vj] = (1− qj) + qj Rj = 1− qj (1−Rj) = 1− qj LGDj

The sovereign bond price v∗j can be defined as the bond discounted expected value, with

yf risk-free rate.

The price defines implicitly the yield yj of sovereing bond j (under risk neutral measure)

as follows:

v∗j = e−yf T E[vj] = e−yf T (1− qjLGDj) = e−yj T

Finally, the bond spread can be defined as: sj = yj − yf , with e−sj T = 1− qj LGDj

An useful fact about spread is that:

sj ≈
1

T
qj(1−Rj) =

1

T
qj LGDj(for small sj)

5.2. Sovereign default conditions

Following a stream of literature (Gray et al. 2007), we model the payoff of the defaultable

sovereign bond as dependent on the ability of the sovereign to repay the debt out of its fiscal

revenues accrued until the maturity. More in detail, the balance sheet of the sovereign entity

is modelled as follows:
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• Assets: net fiscal assets, i.e. the accrued value over time of tax revenues minus expen-

ditures such as investments and subsides;

• Liabilities: debt securities issued as sovereign bonds with the same maturity.

We have a sovereign i balance sheet defined as: Aj(t0), Aj(T ) net fiscal asset at t0 and

maturity; Lj(T ) liability.

The default condition (e.g. Gray-Merton-Bodie 2007) reads as:

Aj(T ) = Aj(t0)(1 + ηj(T )) < Lj(T )

[

We add then a climate policy shock ξj on j’s net fiscal assets (“jump” up/down), assuming

idiosyncratic shock ηj and policy shock ξj are independent.

The new sovereign default condition reads as:

Aj(T ) = Aj(t0)(1 + ηj(T ) + ξj(P )) < Lj(T )

⇐⇒ ηj(T ) ≤ θj(P ) = Lj(T )/Aj(t0)− 1− ξj(T, P )

where θj(P ) is the default threshold under scenario P , ξj(P ) is the climate policy

shock from B to P (can be positive or negative), ξj(P ) > −1, possibly correlated across j.

Differently from Gray et al. 2007, we do not consider whether debt is issued in local or

foreign currency, and we do not consider exchange rate risk.

In the context of climate change, there is a consensus among scholars and practitioners on

the fact that markets and investors are not yet pricing in all the information available about

climate-related financial risks. Therefore, we relax the classic assumptions of efficient and

frictionless markets that is needed in the Merton model (Merton 1974) to solve the pricing

in closed form. Our goal here is to model the mechanism of the shock transmission channel

from fiscal revenue to the value of the sovereign bond, in a market that is non necessarily

efficient.
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5.3. Sovereign default probability

We can define the Default probability PD qj of issuer j under Climate Policy Sce-

nario P , with φP (ηj) probability distribution of idiosyncratic shock ηj, ηinf lower bound of

distribution support:

qj(P ) = P(ηj < θj(P )) =
∫ θj(P )

ηinf
φP (ηj) dηj,

We introduce now a proposition of the PD adjustment ∆ under the climate policy shock

following the intuition that frequent small productivity shocks across time and firms occur

in a similar way with/without climate policy shock. Then, the policy shock shifts the

probability distribution of the small productivity shocks and thus the default probability of

issuer j.

We introduce the assumption that the idiosyncratic shocks are independent from policy

shock, i.e. conditional to occurrence of ξj.

And we obtain that the PD adjustment under policy shock scenario is:

∆qj(P ) = qj(P )− qj(B) =
∫ θj(P )

θj(B)
φ(ηj) dηj, with θj(P ) = θj(B)− ξj(P )

Then, assuming that:

• The idiosynchratic shocks are independent from the policy shock;

• The policy shock on fiscal asset is proportional to shock on GVA via elasticity ξj =

χj u
GVA
j (P )

The adjustment ∆qj(P ) in default probability of sovereign j under Climate Policy Shock

Scenario:

• Increases with GVA shock magnitude |uGVA
j (P )| if uGVA

j (P ) < 0, and decreases vicev-

ersa (under mild condition on φ);

• Is proportional to the GVA shocks on climate relevant sectors (in the limit of small

Climate Policy Shock):

∆qj(P ) ≈ −χj (uGVA
j,PrFosw

GVA
j,PrFos + uGVA

j,ElFosw
GVA
j,ElFos + uGVA

j,ElRenw
GVA
j,ElRen).
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Climate policy shock sovereign bond value adjustment

Being ∆v∗j defined as the change in the discounted expected value of the bond, v∗j ,

conditional to a Climate Policy Shock Scenario B → P

∆v∗j = v∗j (qj(P )− v∗j (qj(B)) = −e−yf T ∆qj(P )LGDj

Proposition: conditional to policy shock scenario B → P , and assuming everything else

the same regarding the issuer’s balance sheet, then the bond value adjustment ∆v∗j (P ):

• Is negative and increases with magnitude of policy shock |ξj(P )| if ξj(P ) < 0;

• Is positive and increases with magnitude of policy shock if ξj(P ) > 0, with the con-

straint v∗j ≤ 1;

6. Climate Spread

The Climate spread ∆sj is defined as the change in the spread sj, conditional to

Climate Policy Shock Scenario

∆sj = sj(qj(P )− sj(qj(B))

Conditional to the climate policy shock scenario, the climate spread sj(P ):

• Increases with magnitude of policy shock |ξj(P )| if ξj(P ) < 0;

• Decreases with magnitude of policy shock if ξj(P ) > 0;

• For small GVA shocks uGVA
j (P ) it holds:

∆sj ≈−
1

T
χj ×

× (uGVA
j,PrFosw

GVA
j,PrFos + uGVA

j,ElFosw
GVA
j,ElFos + uGVA

j,ElRenw
GVA
j,ElRen)

7. Investor and Portfolio Value-at-Risk and Climate Value-at-Risk

We can define an investor i’s portfolio value zi and portfolio rate of return πi at T , with

Wij amount (numeraire) of j’s bond purchased by i as:
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zi(T ) =
∑
j

Wijvj(T ), πi =
zi(T )− zi(t0)

zi(t0)
.

The Value-at-Risk (VaR) on investor’s rate of return is the “worst case loss” at confi-

dence level CV aR. Given the probability distribution ψ(πi(T )),

the VaR = value of return πi (e.g. left tail) such that:

P{πi < VaR} =

∫ VaR

inf(πi)

πi ψi(πi) dπi = CV aR

The Climate VaR is defined as the Value-at-Risk of the portfolio of the investor, con-

ditional to Climate Policy Shock Scenario with π portfolio return, ψP (π) distribution of

returns conditional to the climate policy shock:

ClimateVaR(P ) =

∫ ClimateVaR

inf(π)

π ψP (π) dπ = CV aR

.

Conditional to the policy shock scenario B → P , the ClimateVaR(P ):

• Increases with magnitude of policy shock |ξj(P )| if ξj(P ) < 0;

• Decreases with magnitude of policy shock if ξj(P ) > 0;

• Increases with marginal default probability adjustment ∆qj(P ) of bond j.
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Does Climate VaR add financial value : Some empirical evidence

Abstract

Increasing carbon-emissions and changes in the Earth’s surface temperature have brought about a 

large incidence of climate-related disasters over the past decade, with even worse outcomes 

expected in the near future. In this study, we attempt to de-risk a Russell 1000 index portfolio by 

utilizing physical Climate VaR (CVaR) metrics and excluding securities most exposed to such 

events. The exclusions are carried out based on sectors to avoid any biases from sectoral 

deviations. We find that the so-created CVaR portfolio often outperforms the benchmark with the 

excluded stocks exhibiting much lower returns over the 2018 to 2022 period, a result which is 

further bolstered during climate disasters. Moreover, we observe that only 25% of the excess return 

over time can be explained by existing factors which ties in with the fact that we see only half of 

the active risk coming from factors.

JEL Classification Codes : G11, G12, G14, G32

Keywords: Climate VaR; transition risk; mitigation risk; low carbon investing; ESG

Key Takeaways:

 Climate VaR (CVaR) has a very limited history available

 Based on the available history, we find that CVaR portfolios outperform the benchmark, 

and the majority of their excess returns cannot be explained by factors

 We also find that the securities excluded by CVaR have performed poorly in the periods 

following extreme climate events
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Background

With the industrial revolution gaining headway in the United Kingdom in the 19th century, many 

economists were worried about the depleting coal resource and thereby argued for a more efficient 

use, increasing availability of the same. This, while true, did not provide a complete picture of the 

phenomena. William Jevon showed that an increased efficiency would often be followed by a 

lowering of cost which in turn would lead to an increase in demand (a rebound effect). This was 

referred to as ‘Jevons Paradox’(York, 2006). While primarily meant for coal, the effect can be 

attributed as one of the largest pitfalls in environmental economics.

Fossil fuel energy demand alone rose by over 2000% from the 1860s (brink of the industrial 

revolution) to the 2000’s (Malm, 2016). This use, while a boon for our civilization in many ways, 

like all other things, came with a hidden cost in the form of carbon emissions. These emissions 

trap the heat within the atmosphere and lead to an increase in the global temperature. The IPCC 

(Intergovernmental Panel on Climate Change) reports suggest that the average surface temperature 

had risen by approximately 1.1oC (as of 2017) with a further threshold of 420 billion Tonnes of 

CO2 before the temperature would rise to 1.5oC (IPCC, 2015). Given an average yearly emission 

of 40 billion Tonnes, this number does not seem far off. Both Current Policy and Moderate Action 

Reference Pathways (as obtained from the IPCC AR6 database) indicate this point by 2030 

(Figures 1 and 2) (Byers, Edward et al., 2022).
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Figure 1 – Baseline Reference Scenarios as per IPCC AR6 Database
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Figure 2- Predicted increase in surface temperature corresponding to reference scenarios as per IPCC AR6 Database
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The IPCC Special Report lists 5 Reasons for Concern associated with increasing temperature, 

ranging from threats to various systems to large singular events – with most of them being 
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demarcated as high-moderate risks at a 1.5oC mark (O'Neill et al, 2017) -This is further 

corroborated by NOAA climate.gov which sees a vast jump in climate related disasters over the 

past few years, associating a cost of $742.1 billion in the period 2017-2021 as opposed to a net 

cost of $872.9 and $556.8 billion over the decades of 2010’s and 2000’s respectively with these 

events.

These weather-related disasters have an adverse effect on the functioning of firms within the 

affected regions. For example, many transport, agriculture, oil, and gas etc. industries in Louisiana 

suffered large losses due to Hurricane Ida. 

To counter/safeguard against these events in portfolios, we can use an iteration of the widely used 

Value-at-Risk metric dubbed as the Climate Value-at-Risk (CVaR). CVaR is a relatively new 

concept based incorporating the “size of loss attributable to climate related financial risks by 

comparing the value of assets in a world with climate change relative to the same world without 

climate change” (Task Force on Climate-related Financial Disclosures, 2020)

One of the earliest iterations of the metrics calculated the value at risk of global financial assets 

based on a business as usual (BAU) scenario (based on a 2.5oC pathway) and a 2oC carbon 

emission mitigation pathway (Dietz et al., 2016). It observed that nearly 1.77% of the financial 

assets (~$2.5 trillion) were at risk based on a mean value for climate change between 2015 - 2100 

relative to a 1.18% at a 2oC pathway, with most of the risk lying in the tail with a 99% CVaR 

jumping to 16.86% (~$24.2 trillion) on a BAU scenario. The differences clearly exemplified the 
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need to move towards a more environmentally friendly solution with mitigation strategies required 

to reduce tail risk. While foreboding, these numbers may be conservative given that latest evidence 

based on the IPCC WG III reference pathways link to a current policy temperature rise closer to 

3-4oC (Shukla et al., 2022).

Recent studies have tried to identify market responses to uncertainty faced by firms regarding both 

the potential incidence of extreme weather events and subsequent economic impact on the US 

market (with a focus on hurricanes). Comparing the ex-ante expected volatility with ex-post 

realized volatility shows a significant underestimation of weather uncertainty (though it does start 

diminishing post hurricane Sandy). They also observed that there was a large dispersion 

(underperformance) in cumulative abnormal stock returns for the affected firm up to 6 months 

after the event relative to the control group (Kruttli et al., 2021).

Studies have also attempted to find whether climate risks are priced in security prices. It was 

observed that only imminent climate policy news is accounted for in prices, that too, primarily 

post 2012 (Faccini et al., 2021). Their findings revealed that the risks generated by government 

intervention (and not direct risks from climate change) were priced into the stock market. These 

could be attributed to – investors only paying attention when climate risks became an issue for US 

politics; lack of information on exposure to climate risks; and the myopic view of financial 

investors on risks with immediate effects – thereby leading to a market failure in pricing the stocks.
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Data and Methodology

Climate VaR is estimated by several financial and ESG data vendors including MSCI, ISS, etc. 

Most of these vendors align with the Task Force on Climate-related Financial Disclosures (TCFD) 

recommendations for conducting scenario analysis. 

For the exercise, we primarily use the MSCI Value-at-Risk Metrics provided by MSCI ESG 

Research. These metrics aim to provide a forward looking and returns based valuation assessments 

to measure climate related risks and opportunities associated with a security based on a 15-year 

horizon (MSCI, 2022). 

The dataset can be fundamentally broken down into 3 components - physical risks, policy risks 

and technological opportunities. For this exercise, we primarily restrict ourselves to physical risks, 

given that these are readily observable today with many of the transition risks and technological 

opportunities (country-wide policies, carbon pricing, green-innovations, etc.) likely to come into 

play in the future with many countries still taking a soft stance on the issue. 

The physical risk scenarios as defined as possible climatic consequences resulting from increased 

levels of GHG emissions and the ensuing financial burden (or opportunities) borne by businesses 

and their investors. The expected costs of physical risks are calculated as a function of vulnerability 

(cost function), hazard (type of weather event) and exposure (location and allocation of company 

facilities) (MSCI, 2021). Here, we restrict ourselves to the aggressive scenario (as provided by the 
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dataset) based on an RCP 8.5 (Representative Concentration Pathway corresponding to about a 

4.3oC increase in temperature by the year 2100). 

The metric we use provides an equity’s upside or downside potential (as a % of market value) 

assuming trends in extreme cold, extreme heat, extreme precipitation, heavy snowfall, extreme 

wind, coastal flooding, fluvial flooding, tropical cyclones, and river low flow. The values can 

theoretically range from -100% to +100% (positive CVaR numbers are however quite rare and 

represent a ‘reduction in current costs’ due to a given weather effect – e.g., easier transport due to 

a decline in snowfall; rather than a ‘profit’). Here, we use the latest available CVaR dataset as of 

May 31, 2022. This represents the latest scores with model updates and provides us with an updated 

outlook with max coverage on securities. 

While one should ideally use point-in-time CVaR for constructing these portfolios – the history 

available for these metrics is limited, and hence we use the security level CVaR as of  May 31, 

2022 historically. While this might be construed as a forward looking bias, we make this modelling 

choice due to multiple reasons – firstly, the underlying data that goes into the computation of 

CVaR is relatively slow moving. Additionally, as a relatively new metric, any historical data 

available would be backfilled and runs the risk of being overfitted. Thirdly, as a new metric with 

limited history at our disposal, a portfolio constructed with current data filled historically should 

give more information than a point in time analysis.
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We use these scores to calculate security CVaR scores which enables us to identify the securities 

most likely to be affected by extreme weather events and exclude them thereby de-risking our 

portfolio (to climate events) and compare its performance to the benchmark and a portfolio 

comprised of the excluded securities over ) our four year testing period. The portfolio CVaR scores 

are calculated using the following equation:

𝑉𝑎𝑅𝑝 =
∑

𝑞
𝑉𝑎𝑅𝑞 ∗ 𝑤𝑞

∑
𝑞
𝑤𝑞

which states that the CVaR of the portfolio can be calculated by using the weighted average of the 

security CVaR.

For the benchmark index, we used the Russell 1000 index constituents and their weights. 

Restricting the index to US only securities provides a 2-fold advantage. One, it helps us ensure a 

steady coverage of the index. (The coverage (in terms of market cap) at the beginning period (June 

2018) is about 91.7% and sees a steady rise to ultimately covering about 98.4% of the same). 

Second, it can help restrict country-wise effects and with the US having a wide-ranging 

topography, provide a more accurate assessment of the relative effects of climate disasters as 

opposed to ones on the extreme end (e.g., Japan – very prone to flooding activities).

We evaluate the efficacy of this metric by constructing portfolios based on this – and then studying 

their risk return characteristics. Climate risks have a significant sectoral deviation, and a naïve 

portfolio construction would be susceptible to large sectoral deviations. If one were to exclude the 
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bottom 10% of the securities in the entire universe, without controlling for sectors, as much as 

38% of utilities would get excluded.  

Table 1 – Weighted Average CVaR per Sector, and exclusions based on naïve approach (as of March 2022)

Sector Total Names
Names in 

Bottom VaR 
Decile

% Names in 
Bottom VaR 

Decile

% Weight in 
Bottom VaR 

Decile

Weighted 
Average 
CVaR

Communication 
Services 61 7 11% 11% -0.50

Consumer 
Discretionary 140 8 6% 2% -0.22

Consumer Staples 58 18 31% 27% -0.73
Energy 47 7 15% 5% -0.26
Financials 151 8 5% 3% -0.52
Health Care 134 6 4% 3% -0.59
Industrials 164 11 7% 4% -0.42
Information 
Technology 184 6 3% 0% -0.38

Materials 59 4 7% 8% -0.12
Real Estate 84 7 8% 4% -0.12
Utilities 39 15 38% 38% -0.36

Source : SSGA, MSCI

Thus, we adopt a worst in class screening approach within every sector, since CVaR is built as a 

risk measure. The detailed methodology is detailed below.

 Separate securities which do not have CVaR data into bucket B1. The remaining securities 

are in bucket B2

 For bucket B2, calculate the weight of every sector.

 Within every sector in B2, select the top 80% securities based on their CVaR. Distribute 

the weight of the excluded securities proportionally to the selected securities, so that the 

sector remains at benchmark weight. The resulting portfolio is B2`
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 Combine the buckets B2` with B1 – essentially adding the uncovered securities at 

benchmark weight and keeping the sector weights aligned with the benchmark – forming 

the final portfolio (referred to as CVaR Aware Portfolio)

To further study the effect of exclusions, we also build a worst in class portfolio, by following the 

same methodology, but selecting the worst 20% securities instead (referred to as CVaR Exclusions 

Portfolio).

Results and Discussion

Table 2 – Portfolio Analysis  (Backtested Returns, June 2018 to March 2022) 

Performance Metrics CVaR Aware 
Portfolio

CVaR Exclusion 
Portfolio Benchmark

Return (%) 17.97 5.88 16.44
Risk (%) 18.21 21.01 18.25
Sharpe Ratio 0.99 0.28 0.90
Excess Return (%) 1.53 -10.57 -
Tracking Error (%) 0.88 7.94 -
Information Ratio 1.73 -1.33 -
Max Drawdown (%) -19.57 -30.20 -20.31
Beta 1.00 1.07  
Average Number of Names 903 358 -
Average Active Factor Risk (%) 51.38 54.93 -
Weighted CVaR (%) -3.01 -17.02 -4.69

Source : SSGA, MSCI

It comes as no surprise that the CVaR aware portfolio has lower Climate VaR. We observe that 

the CVaR aware portfolio consistently performs better than the benchmark over the longer period. 

Conversely, the exclusions portfolio consistently performs worse than the benchmark. As evident 

from the methodology discussion – the sector weights do not differ between the benchmark and 

the portfolios – hence once can safely conclude that all the return differentials are being driven by 
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selection effects, rather than mis-weighting of sectors, which underscores that incorporating 

Climate VaR does have a positive effect on returns. 

To anecdotally ascertain the behavior of these portfolios, we examine their returns during periods 

of climate disasters. In the months of Jun – Oct 2021, the US suffered a heat wave (Western 

Draught) and Hurricane Ida. During this period (both months inclusive) – the CVaR aware 

portfolio returned 86 bps over the benchmark, whereas the CVaR exclusions returned a complete 

850 bps lower than the benchmark – in fact, had an absolute return of -1.3% during the period.

Similarly, during the Mississippi and Missouri River flooding’s in Mar – Jul 2019, the portfolios 

returned 8.4% and 2% respectively, as opposed to a benchmark return of 7.7%. This further 

indicates that Climate VaR does protect our portfolios from downside risks around climate events.

To also understand if this performance differential was motivated by any implicit exposure to any 

style factors, we also look at a factor return attribution for these portfolios. We observe that only 

39 bps of the excess return over time can be explained by existing factors. This also ties in with 

the fact that we see only half of the active risk coming from factors 

However, given that we use the available dataset as of March 2022, we would like to remind of 

the limitations of this exercise, and the potential for a forward looking bias
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Conclusions

Using Climate VaR data, we explored the impact of integrating Climate VaR into portfolio 

construction, and find that prima facie, it adds value and captures information not proxied by 

existing metrics. 

That said, further analysis is required to ascertain how this behavior can be integrated into standard 

climate transition portfolios, and how they fit into the larger scheme of mitigation metrics.

Also, it would be interesting to repeat this exercise after a sufficient period of live Climate VaR 

data is available, and see whether the effectiveness of the metric still holds up. Additionally, it also 

needs to be explored whether the observed effects are regional in nature, or if they can be replicated 

in other regions, with different economic structures, and environmental regulations on industries. 

We leave this for future research. 
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1 INTRODUCTION

Recent years have seen an expansion of the debate on the links between climate change and
the financial system. Both private actors (e.g., firms, banks, asset managers, financial service
providers) and public institutions (e.g., central banks, financial supervisors) have been trying to
understand how economic and financial stability might be affected by (i) physical climate change
impacts and (ii) the transition to a carbon-free economy. The main concern is that a combination
of climate-related drivers (e.g., an abrupt introduction of mitigation policies following an extreme
physical event) could cause economic costs to firms, which could then be transmitted to financial
institutions via defaults and drops in market capitalization. If the drop in financial asset prices is
large enough, it could lead to a financial crisis with systemic economic and social ramifications; a
concept referred to as a ‘Green Swan’ (Bolton et al., 2020) or a ‘Climate Minsky moment’ (Carney,
2015).
While this conceptualization provides important insights into the exploration of possible

futures, it is still not clear how likely a Green Swan scenario would actually be. In particular,
under which conditions should we really expect a significant drop in the price of financial assets
as a consequence of climate-related drivers? The answer to this question depends not only on the
realization (or not) of specific future events, but also on the degree to which the realization of
climate-related risk is already accounted for in current asset prices.
The aim of this article is to develop a critical review of the existing literature investigating

the links between climate change, the low-carbon transition and the price of financial assets.
Previous reviews of related bodies of literature have focused on the state of environmental risk
management at financial firms and supervisors (Breitenstein et al., 2021), the theory of including
climate-related risks inmacroeconomicmodels (Giglio et al., 2021), and specific asset classes such
as equity (Venturini, 2022).
Our contribution covers equity, bonds, loans and real estatemarkets.We structure the literature

further by distinguishing twomain areas of analysis. First, we discuss the literature studying how
real past physical and transition risk drivers have affected the prices in the stock, bond, loan and
real estate markets, i.e. the backward-looking literature. Second, we examine the literature that
uses possible scenarios of climate-related risk drivers to estimate future asset price revaluations,
i.e. the forward-looking literature. Our review is preceded by an investigation into the conceptual
links between climate-related risks, economic costs and asset pricing.
We find that investors do react to climate-related risks, leading to changes in asset prices,

in the cost of capital for firms and in various assessments of financial risk. However, finan-
cial markets likely underprice these risks. Forward-looking methodologies, which include both
stress tests and scenarios-led models, also find that climate-related risks can substantially impact
financial asset prices. While this improves our understanding of the impact of climate-related
risk drivers on financial assets, more research is needed to pinpoint the drivers of financial
instability.
The remainder of the article is structured as follows. Section 2 introduces the conceptual

foundations on which the literature builds. Section 3 reviews the backward-looking litera-
ture on climate-related risks and asset pricing. Section 4 explores the methodologies using
forward-looking scenarios. Section 5 discusses current research gaps. Section 6 concludes.
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2 CLIMATE-RELATED RISKS AND ASSET PRICES

This section briefly presents the main asset pricing model categories currently used by financial
market participants and discusses their accuracy in assessing climate-related risks. We introduce
key concepts in the pricing of climate-related risks and distill four transmission channels through
which climate-related risks could cause economic losses and changes in asset prices.We highlight
how climate-related risks could be destabilizing for financial markets.

2.1 The pricing of financial assets

2.1.1 When does the price of a financial asset change?

According to standard asset pricing theory, the market price of a financial asset is equal to the
expected net present value (NPV) of its expected future payoffs – that is, its future income flows
(Cochrane, 2001). For equity instruments, payoffs are equivalent to the dividends paid by the firm
issuing the equity. For debt instruments, they are the interests and the repayment of the principal
by the borrower. Additionally, investors ask for a premium to compensate for the risk they take
on (Pástor & Veronesi, 2013).
The price of a financial asset therefore largely depends on financial investors’ expectations

about payoffs and risk exposure. A revision of these expectations can lead to sharp price move-
ments. We can distinguish (i) changes in expectations resulting from exogenous events; and (ii)
endogenous expectations revisions. Exogenous changes are due to sudden unexpected events,
either at the systemic level (e.g., the Covid-19 pandemic or an economic recession) or at a company
level (e.g., the announcement of weak quarterly profits, a risky lawsuit or a sudden price increase
of key production inputs), which are able to modify the near−or longer-term profit prospects.
Endogenous reassessments are due to a change in the forecasting model or the parameters they
are fed (e.g., new risk drivers are identified and their relationship to financial assets are better
understood).
Additionally, the price of a financial asset can change with investors’ risk perception. Changes

in expected default probabilities, as well as in the expected values of liquidated assets or col-
lateral, determine the amount of risk taken by investors. Higher financial risk would decrease
financial asset prices or force the issuers of the asset to provide higher returns for investors as a
compensation for the additional risk.
The nature of the financial instrument and the markets on which they are traded determine

how their prices react to financial risks. Equity prices, which are valued in the very short term,
will react almost immediately to emerging risks. Loans are not valued on such a short-term basis.
Rather than revalued, their riskiness determines the future loan conditions for the same borrower.
Bonds operate similarly if they are issued at fixed rates. They may also be issued at floating rates,
with interest payments determined by underlying indices, altering their fundamental value in
relation to the index. However, bonds are also traded on secondary markets and thus their yield
can fluctuate more immediately based on new information.

2.1.2 Asset pricing models

The asset pricing models, which have been mostly used in the context of climate risks, can be
divided into two broad classes:models based on arbitragemechanisms andmodels based on firms’
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fundamentals and risk exposures. They differ in their approaches to measuring mispricing. Arbi-
tragemodels identify mispricing by comparing the price of two assets generating similar expected
financial return profiles (e.g., the Black-Scholes option pricing model; see Black & Scholes, 1973).
Models based on firms’ fundamentals and risk exposures assess mispricing by comparing the
price of an asset with its theoretical fundamental value given its expected risk-return profile. This
profile can be based on (i) macroeconomic factors (e.g., the Consumption-based Capital Asset
Pricing Model (CAPM), see Breeden, 1979); (ii) firm-specific risk factors at the market level (e.g.
the Fama-French model, see Fama & French, 1993; and the Carhart model, see Carhart, 1997)
or (iii) firm-specific risk factors at the individual level (e.g., asset variance in the CAPM). Arbi-
trage and fundamentalmodels bothhave their advantages anddrawbacks: arbitragemodels, based
on comparing asset prices between themselves, cannot identify mispricing if markets are glob-
ally mispriced. Fundamental models, based on the estimation of a theoretical asset price, give
imprecise assessments that are highly dependent on the assumptions underpinning the model.
Models based on fundamentals and risk exposures are however better suited to address climate-

related risks for at least two reasons. First, since they are based on estimated future flows (income,
cost) and risks, they can integrate projected values for these flows and risks in different climate
scenarios. They therefore do not rely on past data. Previous research has stressed that the use
of past data cannot capture the effects of climate change, a phenomenon for which economic
consequences have not been fully observed yet (Dunz et al., 2021; Svartzman et al., 2021). Second,
they provide an assessment of the alignment of overall financial prices with the value they could
take under different climate scenarios. This is particularly useful to spot a general misalignment
of financial prices – for example, when financial actors globally underestimate a risk factor, which
could be the case for climate-related risks. Models based on arbitrage mechanisms, on the other
hand, are less likely to identify such cases because they compare market prices relative to each
other and thus would miss an overall misalignment of all prices. Models based on fundamentals
and risk exposures have been mobilized in some of the studies that will be surveyed in Section 3
(Alessi et al., 2021; Monasterolo & de Angelis, 2020). Note, however, that asset pricing models are
not applicable to some types of assets, such as loans (Ehlers et al., 2021) or real estate. Some papers
may also deploy alternative identification strategies to understand the impact of a climate-related
event on asset prices, like difference-in-differences approaches around a key event (e.g., Nguyen
et al., 2020).

2.2 Climate-related risks and asset prices

We now turn to the climate-specific aspects of asset pricing. Climate change and the low-carbon
transition can modify financial asset prices via multiple channels. Figure 1 visually presents the
main transmission channels (see Semieniuk et al., 2021 for more details on transition risk drivers
and Clapp et al., 2017; Lepousez et al., 2017; TCFD, 2017 for details on physical risk drivers).
We can identify the types of climate-related risks. Since Carney (2015), the literature

distinguishes between transition, physical and liability risks:

∙ Transition risks stem from the transition to a low-carbon economy. They include risks created
by mitigation and adaptation policy, emerging clean technologies and behavioral changes of
consumers and investors (TCFD, 2017).

∙ Physical risks emerge from a changing climate (i.e., a long-term shift in the mean and variance
of temperatures and magnitude of weather events). Climate change redraws risk patterns for
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F IGURE 1 The journey from climate-related impacts to asset price changes [Colour figure can be viewed at
wileyonlinelibrary.com]

assets, which can be either acute (e.g., from extreme weather events) or chronic (e.g., from sea-
level rise). Physical changes do not only threaten built capital stocks and flows, such as output,
but also labor productivity (Kjellstrom et al., 2009; Zander et al., 2015).

∙ Liability risks stem from the possibility of costly climate change litigation against polluting
industries or inert governments and financial institutions (alternatively, they are referred to
as litigation risks). While the importance of liability risks for asset prices remains under-
researched, the Sabin Center for Climate Change Law (2022) documents that there have already
been made a number of claims in the US, many against state and federal institutions, as well
as the fossil fuel industry. Setzer and Higham (2021) find that climate change litigation is being
brought before courts in an increasing number of countries.

Second, these drivers can affect the current or prospective profits of firms. We jointly con-
sider physical, transition and liability risks to underline the conceptual similarity and complex
interaction between them.1
While the three risk types have distinct drivers, their economic effects on the exposed firms

share four main transmission channels:

∙ Assets: A climate-related event destroys capital assets, prohibits their use or makes them
unprofitable to be used. For example, a carbon tax could trigger asset stranding or make previ-
ously productive capital uncompetitive (transition risk). Lower mean precipitation could, e.g.,
decrease the productivity of agricultural land (physical risk). The firm must prematurely write
off its assets.

∙ Investment: A climate-related event forces a firm to update its infrastructure or production
process. For example, a new clean technology standard (transition risk) or higher mean tem-
peratures (physical risk) force upgrades to the infrastructure. The capital expenditure (CapEx)
of the firm increases.

∙ Production network: A climate-related event creates costs by changing demand patterns, dis-
rupting supply chains, or making it impossible to serve markets. A carbon border adjustment
mechanism could reduce the demand for high-carbon imported inputs (transition risk). An
extreme weather event could disrupt a trading route (physical risk). Climate-related litigation
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F IGURE 2 Four common transmission channels for impacts from physical (red), transition (blue) and
liability (yellow) risks. Channels, which can transmit positive as well as negative changes, are marked (+/−)
[Colour figure can be viewed at wileyonlinelibrary.com]

could reduce the willingness to do business with a firm (liability risks). Costs materialize as
revenue losses or increased operating expenditure to keep up supply chains.

∙ Credit: A climate-related event leads to a reaction by capital markets, upon which a firm relies.
A changed risk profile due to the exposure to transition, physical or liability risks could increase
its interest rates for debt capital or insurance premia. If the firm’s value decreases, so does its
leverage for debt capital.

Figure 2 summarizes how transition, physical, and liability risk drivers can be jointly considered
as impacting firms through four transmission channels. Some of these channels can act positively
or or negatively on companies, as the low-carbon transition may also create value for some firms.
While some regions may be affected by increased risk of drought, others may witness opposite
trends (Hong et al., 2019).
From a methodological standpoint, climate factors are introduced both as macroeconomic fac-

tors that impact the market of a specific asset and as a source of risk to which specific firms are
exposed. To assess whether climate-related risks are priced in, researchers are working around
three lines. Some of them estimate the impact of climate events on firms’ fundamentals (gains
and losses, productivity, etc.) and then check whether market prices reflect these impacts (Hong
et al., 2019). Others compare the risk premium2 of assets exposed to climate-related risks with
those that are not (or less) exposed to them, to see whether market participants price the differ-
ence in risk exposure (Alessi et al., 2021; Wen et al., 2020). Finally, researchers also check whether
market prices react to news on climate risks, as should efficient markets do (Byrd & Cooperman,
2018; Faccini et al., 2021).
Third, the change in actual or expected company profit prospects will change the price of their

financial assets. We can distinguish two types:

∙ Exogenous shocks from materializing climate-related risks affect a company’s ability to service
debt obligations or share profits with equity owners, leading to revaluations of their financial
contracts. Additionally, new information on a firm’s exposure to climate-related risks can lead
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to reassessments of the risk premium asked by investors. The fundamental uncertainty over
the course of climate-related impacts, both over physical climate change (Deser et al., 2012;
Shepherd, 2014) and the policy response (Fried et al., 2019), could manifest as a higher risk
premium.

∙ ‘Endogenous’ reassessments by investors can change their perception of a firm’s exposure to
climate-related risks. For example, a change in the model used for forecasting revenues could
lead to a reassessment of the firm’s value and thus of the value of its assets. Methodologies
incorporating climate-related risks are increasingly used and developed by investors (Monnin,
2018).

Networks in financial markets can amplify initial direct losses incurred due to assets’ vulner-
ability to climate-related risks (e.g., a value drop of fossil fuel companies’ securities), resulting
in financial instability. Indeed, financial markets are deeply interconnected, multi-layered webs
of debt and credit relationships. As such, adverse network externalities have been found to play
an important role in spreading financial risks that had originally affected only one counterparty,
with possible systemic implications if many actors are concerned (Acemoglu et al., 2015; Gai &
Kapadia, 2010). In the context of climate-related risks, studies have shown that initial, seemingly
innocuous shocks can have far-reaching consequences if network externalities are accounted for,
even for agents not concerned by the initial shock (Battiston et al., 2012; Krause & Giansante,
2012). These models have mostly focused on contagion within the interbank market, whereby
balance sheet shocks due to climate-related risks increase counterparty risk and propagate losses
amongst banks by diminishing the value of their claims (Battiston et al., 2017). Subsequent papers
have added relationships between banks and investment funds, aswell as fire-sale dynamics (Ron-
coroni et al., 2021). Of course, these papers do not exhaust the range of possible mechanisms,3
which also encompass default cascades (Allen&Gale, 2000), liquidity crunches (Gai et al., 2011) or
bearish herd behavior (Kiyotaki &Moore, 2002). On the latter, an emerging literature has empha-
sized the role of “climate sentiment” in shaping climate risk dynamics. On theoretical grounds,
Dunz et al. (2021) and Battiston et al. (2021) have insisted on the importance of investors’ non-
rational expectations in driving transition outcomes and risk exposures. On the empirical side, an
emerging literature has intended to measure “climate sentiments” through textual analysis from
newspapers (Ardia et al., 2020; Engle et al., 2020) and Twitter (Baylis, 2020; Santi, 2021). It has
notably shown that investors’ perception of climate-related risks greatly hinged on the occurrence
of physical risks events (Choi et al., 2020), with short-lived and small effects on asset prices (Pástor
et al., 2021). Brière andRamelli (2021) show that arbitrage activity in the form of inflows into green
exchange-traded funds (ETFs) can be used to capture investor demand for green investments and
that these sentiments do not reflect fundamental changes in the underlying securities. All these
interlinks could play out in case of climate-related shock, calling for more work in exploring all
possible ramifications (Battiston & Martinez-Jaramillo, 2018).
Increased attention to climate financial risk in the absence of information about climate-related

impacts could trigger a system-wide reassessment of losses from climate change exacerbated by
herd behavior (Jaffe, 2020; Palao & Pardo, 2017). Materializing climate-related risks could trigger a
steep fall of prices across all asset classes and tighten financial conditions, a phenomenon referred
to as ‘climate Minsky moment’ (Carney, 2018). Such moments, referring to theories on investor
behavior developed by Hyman Minsky (1970), are defined as a time of reckoning among market
participants after a period of stable growth and prosperity. Market confidence, the theory goes,
encourages investors to shed their risk aversion (Bellofiore & Halevi, 2011) and enter increasingly
speculative investments with borrowed money (Henningsson, 2019).
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Nikolaidi (2017) describes a third scenario for a ‘climate Minsky moment’. In the case that mit-
igation policy is effective, a “green bubble” could emerge as a result of investors’ exaggerated
confidence. Semieniuk et al. (2021) discuss the possibility of a credit bubble in sunrise industries
(i.e., those that stand to gain from the structural change accompanying the low-carbon transition)
in this context. They find that the current literature on financial risks from the low-carbon transi-
tion is largely silent on a green bubble and instead emphasizes the financial instability concerns
from overinvestment in sunset industries (i.e., those that stand to lose). The authors observe that
this is an inversion of the prevailing Schumpeterian view that sunrise sectors are (more) likely to
cause overinvestment and financial losses. A possible explanation for this inversion may be that
the cause of the low-carbon transition is not only driven by opportunity and a price advantage
within the sunrise industries, but also by opportunity cost and political will.
The emergence of clean technologies could also fuel asset bubbles or ‘manias.’ Previous tech-

nological transitions, such as the emergence of the internet, have been associated with such asset
bubbles. In the case of the low-carbon transition, financial markets have shown great appetite
for products with a green label. Aramonte and Zabai (2021) describe the recent growth in investor
interest in environmental finance as a potential source of finance instability. According to the data
analyzed by the authors, magnitudes of the current growth of investments with ESG (i.e., consid-
ering environmental, social and governance criteria) labels (especially inmutual funds and ETFs)
are comparable to the growth of mortgage-backed securities in the time before the Great Finan-
cial Crisis. The fundamental social change associated with this asset boom is akin to a transition
risk driver in the sense we defined above. However, the current asset boom and the potential asset
price deflation that could follow are endogenous processes to financial markets. This endogene-
ity makes a potential green asset bubble slightly different from the other kinds of climate-related
risks we survey here. Given this and the small number of publications on “green bubble” risk, we
do not focus on this literature in the review below.

3 BACKWARD-LOOKINGMETHODOLOGIES

After having discussed the general conceptual framework of this literature, we now study the
empirical evidence offered by backward-looking studies. We try to address two fundamental
questions. (i) Do climate-related risks influence asset prices? And (ii) are climate-related risks
efficiently priced-in on asset markets? We turn to each of these questions separately

3.1 Do climate-related risks influence asset prices?

To approach this question, we review the literature focusing on the observable links between
climate-related risk drivers and asset prices.4 A significant and diversified body of work exists
by now, studying different types of assets with different methodological approaches, and obtain-
ing sometimes opposite results. We digest this heterogeneity by identifying key dimensions to
categorize available studies.
A first differentiation can be drawn by distinguishing the contributions investigating the effects

of climate-related risks on ‘negatively exposed’ assets, and those studying instead ‘positively
exposed’ assets:
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∙ Negatively exposed assets are those assets that are assumed to be the losers of a low-carbon tran-
sition (e.g., assets from fossil fuel corporations and firms with high carbon intensity) or affected
by physical climate change (e.g. bonds frommunicipalities with inundated areas from sea-level
rise or equity of firms with production facilities close to disaster zones).

∙ Positively exposed assets on the other hand are assumed to be beneficiaries of a low-carbon
transition (e.g., assets from renewable energy producers and firms with low carbon intensity).

3.1.1 Negatively exposed assets

We report the findings of the literature focusing on negatively exposed assets in Panel 1 and
in Tables A1 (physical risk drivers) and A2 (transition risk drivers) in the appendix. Given the
wealth of different approaches in the literature, we identify three key dimensions to categorize
the contributions: (i) type of asset; (ii) measure of impact; and (iii) direction of the effects.
First, we distinguish between different types of assets being studied: equity, bonds, loans and

real estate. We identify them in Panel 1 by using different symbols. Second, we distinguish four
main types of impact measure, that is the indicator used to compute the extent to which asset
prices are affected by the climate-related risk drivers (the columns of Panel 1):

∙ Financial asset prices refers to changes in the price of stocks and derivatives, as well as the
valuation of bonds.

∙ Real estate prices refers to changes in real estate prices affected by climate impacts. While real
estate is not a financial asset per se, it is frequently used as collateral for loans, which in turn
appear on the balance sheet of listed financial institutions or are tradedwithinmortgage-backed
securities.

∙ Cost of capital refers to changes in the cost of equity or the cost of debt firms face. The cate-
gory encompasses measures for the cost of equity, loan rates/spreads and issuance cost for debt
instruments.

∙ Risk assessment refers to a change in financial risk as measured by financial risk metrics.
This category encompasses papers that use the following measures of impact: tail risk, capital
adequacy ratio (CAR), implied volatility, rate of non-performing loans and distance-to-default.

Third, where multiple contributions look at the same asset class using broadly similar impact
measures, we differentiate them according to the results they obtain: negative effects (that is a
drop in the asset price or an increase in the cost of capital), no effects or positive effects (lower,
middle and upper row, respectively, in Panel 1). Finally, we also distinguish transition (blue) and
physical (orange) risk drivers by color.
Based on our analysis of the literature, summarized in panel 1, we can establish some

conclusions:

∙ The effects of physical and transition risk drivers across all four measures of impact are pre-
dominantly negative. Yet, some positive effects are detected in studies focusing on financial
asset prices.

∙ Positive effects for negatively exposed assets are only documented as far as equity price changes
are concerned. Three out of the four papers finding positive asset price reactions focus on
transition risks. In particular, investors that learn about a firm’s environmental impact from
mandatory disclosures (Alessi et al., 2021) and their eligibility for carbon pricing schemes
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(Wen et al., 2020) seem to ask a risk premium from issuers. This increment is now referred
to as a “carbon premium” in the literature (Alessi et al., 2021; Bolton & Kacperczyk, 2021).
Anttila-Hughes (2016) finds that extreme temperature events depress asset prices of fossil-fuel
producing energy firms in the ten days period after the event. However, news of collapsing polar
ice sheets have positive effects. He attributes this to the possibly reduced cost of energy firms’
access to polar resources.

∙ Real estate prices are predominantly negatively affected by physical risk drivers. Exposure to
sea-level rise (Bernstein et al., 2019), as well as a location in flood plains or the path of a hurri-
cane is penalized with lower prices (Atreya & Ferreira, 2015; Bin & Landry, 2013). Murfin and
Spiegel (2020), however, find no price effect for houses that have shorter inundation times in
the event of a flood when controlling for other house specific factors.

∙ Lenders seem to price in possible climate-related risks when making lending decisions and
setting interest rates, although the magnitude of effects overall is low. In the literature, firms
exposed to physical and transition risks face higher cost of capital, evidenced in higher interest
rates for loans (Chava, 2014; Huang et al., 2019) and fewer positive lending decisions (Nguyen
et al., 2020). Cost of equity is also affected (Garzón-Jiménez & Zorio-Grima, 2021; Nguyen et al.,
2020).

3.1.2 Positively exposed assets

We also review the related literature studying assets thatmay benefit froma low-carbon transition,
i.e. positively exposed assets (for an overview, see TableA3 in theAppendix). Such positive exposure
may come in the form of compliance with the EU-ETS (the European Union’s emission trading
scheme) (Ravina, 2020; Ravina & Kaffel, 2020), relatively lower emissions (Bernardini et al., 2021;
Cheema-Fox et al., 2019; Monasterolo & de Angelis, 2020; Soh et al., 2017) and renewable energy
and cleantech firms (Kempa et al., 2021; Noailly et al., 2021). Almost all papers in this category
focus on transition risks, with most contributions studying price effects on stocks (Bernardini
et al., 2021; Cheema-Fox et al., 2019; Ramelli et al., 2019; Ravina & Kaffel, 2020; Soh et al., 2017)
and bonds (Ravina, 2020). One paper investigates the effect of environmental policy stringency
on the cost of debt for non-renewable energy firms (Kempa et al., 2021); another on the proba-
bility to receive venture capital funding when climate sentiments are high (Noailly et al., 2021).
Two contributions study the effect of transition risk drivers on the value given by financial risk
metrics, that is, the rate of non-performing loans at banks (Cui et al., 2018) and the systemic risk
associated with equity (Monasterolo & de Angelis, 2020), respectively. Anttila-Hughes (2016) is
the only paper investigating assets that may be positively exposed to physical climate risks: stocks
of energy firms show positive abnormal returns in response to news of collapsing polar ice sheets.
All but one paper in this category (Bernardini et al., 2021) find that transition risk drivers have

positive effects on asset prices and decrease riskiness or the cost of capital of positively exposed
firms. This is a similar result to the predominantly negative effects we document for negatively
exposed assets above. However, it follows a different logic. The fact that physical and transition
risk drivers may create costs for negatively exposed firms does not imply that other, non-exposed
firms would benefit economically. Thus, such positive price effects may be the result of capital
shifting out of assets exposed to climate-related risks and into non-exposed assets.
Returning to the question asked at the outset of this section, we conclude that climate-related

risks do influence asset prices. This influence is mostly negative for negatively exposed assets,
that is, firms’ (equity) value decreases, the perceived risks associated with their assets increase, or
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firms face higher cost of capital; and positive for positively exposed assets. The heterogeneity in
themethodologies employed by authors to understand the differentiated impact of climate-related
risk drivers on asset prices means that results (and especially their magnitude) are not easily com-
parable. In our review, we cannot do enough justice to this circumstance, which is why we have
limited our visualization to the extent that it only reports the direction of the effect, not the mag-
nitude. That being said, results are usually robust to a wide range of robustness checks (e.g., Delis
et al., 2019), and to the precise specification of asset pricing models. Across papers, results are for
instance broadly consistent across Fama-French five-factor models (Bolton & Kacperczyk, 2021)
and a Fama-French three-factor model (Bernardini et al., 2021). Finally, within papers, authors
tend to estimate carbon risks based on several asset pricing models, showing qualitatively similar
results (Bernardini et al., 2021; Görgen et al., 2019).

3.2 Are climate-related risks efficiently priced?

The discussion above has shown that financial markets tend to increasingly account for climate-
related risks, although the magnitude of detected effects varies across asset classes, locations,
and sectors. It remains to assess whether these estimates correspond to an “efficient” pricing of
climate-related risks, that is, whether movements in asset prices signal an adequate hedge against
physical and transition risks.
Most papers limit themselves to the display of effects, without discussing efficiency. Yet, some

authors, based on theoretical discussions (Griffin et al., 2015) or the low magnitude of detected
effects (Delis et al., 2019), provide informal appreciations of whether pricing is adequate, and often
conclude that it is not the case.
Proving efficient pricing rigorously would require discussing whether the Efficient Market

Hypothesis (EMH) holds in the context of climate-related risks. However, such an endeavor faces
a “joint hypothesis” issue, a circularity implying that the measure of abnormal returns requires
that the asset pricing model at hand operates at equilibrium, and therefore that measured prices
are equilibrium prices. Whether pricing is efficient or not is therefore an impossible question
to answer. For instance, whether the size of a risk premium is indeed the right one cannot be
said with certainty. Qualitative insights, however, have been provided by some papers. They test
whether the conditions for the EMH hold in presence of climate-related risks. These conditions
can be summarized as follows:

∙ Predictability of returns: Information about climate-related impacts, including indicative data
such as temperatures or policy proposals, from one period should not be able to forecast returns
in the next period, because investors make use of forecasts in their decisions.

∙ Forecast revisions: Investors should revise expected payoffs once new climate-related informa-
tion becomes first available, because they can interpret the economic and financial costs of such
an event.

∙ Climate risk premium: Assets exposed to climate-related risks should trade with a premium.

Exercises of this type have so far mostly been carried out in the context of physical risks, with
the exception of the work of Bolton and Kacperczyk (2021b). They show a mixed picture, with
a greater number of papers pointing to an underreaction of markets to climate-related risks (see
Table 1). Another strand of the literature, based on portfolio analysis, has consistently shown that
there exists a significant green premium or “greenium”, allowing portfolios long on low-carbon
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assets and short on high-carbon ones to quasi-systematically beat the market (e.g., Cheema-Fox
et al., 2019; Ravina & Kaffel, 2020). Such results stand in sharp contrast with the EMH. Finally, it
must be noted that the EMH has come under significant fire after the Great Financial Crisis, with
a large literature rebutting it as theoretically flawed (Crotty, 2008). In the more precise context of
climate-related risks, lengthy scholarship has also expressed doubts as to the validity of the EMH
from behavioral and institutionalist standpoints (Ameli et al., 2020; Thomä & Chenet, 2017).
All in all, the literature tends to tilt towards the opinion that climate-related risks are

inefficiently priced and financialmarkets underreact to them.Asmore climate-related risksmate-
rialize, financial markets may suffer, to a certain extent, from climate-related risks, as they seem
so far not priced-in to their full extent. The question, in turn, is that of the magnitude of these
potential financial disturbances, which cannot be answered based on backward-looking studies
alone. Rather, this requires the use of forward-looking methodologies, to which we turn in the
next section.

4 FORWARD-LOOKINGMETHODOLOGIES

Forward-looking methodologies aim to include the impact of uncertain, but conceivable climate-
related events in their foresight. We use the term ‘methodology’ here broadly to refer to models,
analyses and estimation techniques.
Projecting how climate-related events may result in financial asset price changes requiresmod-

els to make assumptions about future climate change; which climate mitigation policies will be
implemented; the channels through which climate-related events impact firms and their busi-
ness operations; and how these impacts translate into asset price changes and financial market
dynamics.
While methodologies share important characteristics, they also differ considerably within each

of these categories. In the following, we organize our discussion of the differences as follows. We
first discuss two key choices that methodologies face: that of the forward-looking scenario and
of the time horizon. We then turn to four other steps in the estimation, responsible for most of
the heterogeneity in reported asset price changes: The exposure of an asset to climate-related risk
drivers; the translation of economic costs to financial costs; the extent to which financial markets
mitigate or amplify initial costs; and the measure of impact.

4.1 Key choices for forward-looking methodologies

4.1.1 Constructing forward-looking scenarios

A necessary step in the process of investigating the future financial impact of climate-related risks
is to develop assumptions on what the future might look like. These visions of the future take
the form of scenarios, which are usually not guided by probabilities (an exception is Battiston &
Monasterolo, 2021). This is because there is uncertainty over feedback effects and tipping points in
the climate system. Policy paths in democracies are also plagued with uncertainty (Chenet et al.,
2019).
Scenarios are an established means to deal with this uncertainty. They “should have a clear,

plausible, qualitative narrative but also be data-driven” (NGFS, 2019, p. 22). In the field we
are reviewing and following the tradition of Integrated Assessment Modeling (IAM), a critical
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variable defining scenarios is the long-term increase in global temperatures with respect to pre-
industrial averages. It makes sense to group scenarios5 by the degree of expected warming, which
co-determines the stringency of climate policy and thus of transition risks:

∙ Policy action scenarios that limit the warming over the next half-century or so to 1.5–2◦C are
associated with the strictest transition measures, while physical impacts appear more manage-
able. In these scenarios, the shape of the transition determines the shocks to economic activity:
a target temperature rise of below 2◦C could materialize either through a gradual transition of
the economy or through an abrupt transformation leaving some key industries behind.

∙ Extrapolating scenarios are oriented along the temperature path associated with current
emission levels. Taking the Paris Accord’s nationally defined contributions (NDCs) as a base-
line, temperatures in 2100 are likely to exceed the 2◦C target by several decimal points (Robiou
Du Pont & Meinshausen, 2018). Current emission pathways assessed in the UNEP Emissions
Gap Report show that a warming of 3◦C is most likely (Edo et al., 2019). These scenarios are
thus associated with both transition risks, which in some scenarios are directly derived from
NDCs, and physical risks.

∙ No-policy action scenarios take current emissions or even an increase in fossil fuel use as
given and put global warming by the end of the century at anywhere from 4◦C to more than
8◦C. They are associated with virtually no transition risks. Physical climate risks are most
pronounced in these scenarios.

In addition, considerations around the shape of the transition have become increasingly impor-
tant, as a specific target could be obtained through both a gradual non-disruptive transformation
and an abrupt transition with systemic disruptions. The Network for Greening the Financial
System (NGFS), for example, recommends organizing scenarios along two dimensions: first
according to whether climate targets are met or not, and second whether the transition happens
in an orderly manner or not (NGFS, 2019). This classification generates four scenario categories.
(i) An orderly transition that achieves climate goals (that is, stays below 1.5 or 2◦C of warming);
(ii) a disorderly transition that achieves climate goals, (iii) a disorderly transition that happens too
late to meet the climate goals (“too little, too late”) and (iv) a “hot-house-world” scenario without
a disorderly transition but in which climate goals are not met. The NGFS has since developed six
individual scenarios, two in each category with the exception of the “hot-house-world” category.
They are partly based on current signals from governments to decarbonize and are supposed to
provide financial institutions with a common starting point for an analysis of impacts to their
measures of interest (NGFS, 2021). Somemethodologies apply the NGFS suggestions (Allen et al.,
2020) or congruent scenarios that follow the logic of “orderly”, “disorderly” and “no transition”
(Bongiorno et al., 2020). However, other institutions have simultaneously developed their own
scenarios, e.g., focusing on the differences between technological and policy-induced transition
risks (ESRB, 2021; Vermeulen et al., 2018).
The choice of which specific scenario to investigate also depends on the scope of the research.

For instance, studies focusing on transition risks might only look at a 2◦C-scenario. On the
other hand, studies focusing on physical risk drivers might limit their analysis only to emission
pathways creating an increase of temperatures of more than 2◦C. Studies can also include both
transition and physical risks, typically involving a trade-off between the two. Mercer (2019) and
UNEP FI (2019) are examples of studies combining both physical and transition risks.
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4.1.2 Time horizons: long-term forecasts versus stress tests

The speed and modalities of implementation of mitigation policies are crucial, as they determine
the magnitude of both transition and physical risks. The forward-looking literature offers two
possibilities to project the speed of change: current portfolios are either stressed with events that
are expected to materialize in the future; or the development of portfolios is extrapolated into a
point in time in the future when climate-related risks are expected to fully materialize. We thus
distinguish methodologies by their focus on either long-term scenarios or on short-term stress
tests.

∙ Stress tests impose physical or transitional shocks on individual institutions and their portfolios
or on the financial system as a whole. They are short-term and instantaneous in nature but are
sometimes used to shock future projected developments of a portfolio. This approach resembles
the stress test exercises routinely administered by financial market regulators (for an introduc-
tion into stress testing for banks see Dent et al., 2016). Shock scenarios aim at creating unusual
stress and so focus on “tail risks”, referring to the tails of probability distributions.

∙ Long-term scenarios incorporate transition and/or physical effects of probable emission path-
ways and analyze their effects onmacro−or company-level variables over the next 30–100 years.
Given the high uncertainty around the stringency of climate policy and the development of
carbon-sequestering technologies, some of the scenarios also aim to comprise tail risks.

4.2 Options within different estimation steps

Once the basic choices about the scenario and the time horizon of studies have beenmade, several
specific methodological options are possible when estimating physical and transition costs. These
include:

1. Determining the exposure of an asset. Methodologies must determine the degree to which a
company and its assets are exposed to climate-related risks to be able to estimate the costs of
the shock.

2. Determining the financial costs of the economic shock. The economic impacts, however calcu-
lated, need to be translated into financial impacts. Methodologies in this step strongly differ
across studies.

3. Including financial and non-financial market dynamics. Methodologies can consider how
financial networks amplify initial financial effects.

4. Choosing the measure of impact. Methodologies can present the financial impacts of the
scenarios or stress tests using several measures.

We present these options below along the different steps that characterize most methodologies.

4.2.1 Determine the exposure of an asset

Different companies and assets are treated unequally by climate change and climate policy. The
pricing of climate-related risks must consider this heterogeneity by assessing the exposure of
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assets to climate-related risks and the firm’s sensitivity, that is, the ability to respond and adapt to
the exposure. Hubert et al. (2018) define exposure as “the presence of the system of interest in a
place and setting that could be adversely affected by a hazard.” This presupposes detailed knowl-
edge of a company’s assets and business model and how they might be exposed to climate-related
risks.
Such knowledge includes spatial information on the exact geographic locations of a com-

pany’s facilities, as well as expected climate impacts. These should be combined with the sectoral
disaggregation of financial portfolios to account both for common traits of industries and the
heterogeneous spatial exposure of companies of the same sector. In the case of transition risks,
companies of the same sector may operate in different jurisdictions, subjecting them to different
policies. Finally, additional analysis should include information on market power, which could
affect the pricing of products. Such an approach would highlight that not all companies have the
same scope of action when exposed to a shock.
In practice and among methodologies, approaches vary significantly in the granularity and

breadth of exposure analysis. On transition risks, some use impacts on (sectoral) value-added,
calculated for several mitigation scenarios, to determine the potential financial losses (Mercer,
2019). Others create a factor from empirical information that links the average CO2 intensity of
an industry’s production to asset returns in 56 industries (Vermeulen et al., 2019). HSBC (2019)
uses an Integrated Assessment Model (TIAM-Grantham) to derive a set of trajectories for sectoral
activity, emissions, energy use and carbon prices, which are then transformed into changes in
company-level revenues and costs through additional bottom-up models. On physical risks, Four
Twenty Seven and Deutsche Asset Management (2017) map facilities and their exposure to flood
plains. Using this information, they find that firms with spatial diversity fare better against acute
climate risks. Others use spatial data on asset locations and on climate change impacts (up until
2100) not only to determine exposure to direct physical risks but also relevant second-order finan-
cial effects (BlackRock, 2019). Where data is sparse, employing qualitative empirical research,
such as interviews, can help determine the exposure of loan portfolios (Vermeulen et al., 2019).
Another time-intensive way to determine loans’ exposure is to identify corporate loans to fos-
sil fuel producing firms, factoring in non-fossil fuel dependent business activities (Weyzig et al.,
2014).
Such approaches are characterized by a ‘top-down’ approach, which involves using a macroe-

conomic model to translate physical impacts and transition costs into effects on GDP, inflation
and interest rates, prices of intermediate and consumption goods (energy commodities, in partic-
ular), changes in trade patterns, and others. Where data availability allows, methodologies build
exposure analyses ‘bottom up’, from the asset, firm or sectoral level.
This is the case, for instance, of UNEP FI (2019), which uses a number of models to evalu-

ate both the physical and transition impacts on the costs and revenues of companies. Trucost
(2019) uses different carbon price scenarios to calculate the company-level carbon costs and
the resulting ‘earnings at risk’, before aggregating the impacts at the portfolio level. The under-
lying methodological approaches and modeling structures are likely to have a strong impact
on the results. Most models assume some form of maximization, usually in the form of an
intertemporal optimization of a welfare function, to determine carbon price trajectories and other
macroeconomic variables, given certain emission scenarios. Others, most notably E3ME, are gov-
erned bymacro-econometric functions and are demand- rather than supply-driven, meaning that
transition-related investments are treated as a positive increase in expenditure (and hence GDP)
rather than a utility-reducing costs.
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Disaggregated information about exposure is important to show that some assets or loans of
a company may be more at risk than others. In the past, it has been difficult to obtain project-
specific data to estimate loan or bond exposure to climate-related risks and, to a lesser degree,
that of equity. Disclosures of climate-related risks, as recommended by the Taskforce on Climate-
related Financial Disclosures (TCFD, 2017) can help to fill this information gap. But theymight be
insufficient if they are not widely adopted by issuers and if investors do not use the information
that they provide. The EU taxonomy for sustainable activities (“EU Green Taxonomy” for short;
European Commission, 2020), which defines screening criteria for sustainable economic activi-
ties, will be used tomake the contents of sustainable finance productsmore transparent. Financial
institutionswill have clear guidelines as towhat they can label a “sustainable” product. This could
further incentivize them to improve the screening of an asset’s exposure to transition risks. How-
ever, it should be pointed out that an asset’s degree of alignment with the EU Green Taxonomy
does not correspond directly to its exposure to climate-related risks (Monasterolo, 2020).

4.2.2 Determine the financial costs of the economic shock

The economic impacts, however calculated, need to be translated into financial impacts. Given
the many assumptions necessary for this step, the methods strongly differ across studies. Dietz
et al. (2016), for instance, after using the DICE model to calculate the GDP impacts of different
mitigation scenarios, assume corporate earnings to be a constant share of GDP in the long-run,
and the value of financial assets to be a function of discounted cash flows. In Mercer (2019), a
heatmap of sensitivities of different industries and asset classes is developed, to transform sectoral
GDP impacts into returns for different asset classes, disaggregated by industry. In UNEP FI (2019)
the present value of the projected costs and opportunities from transition and physical impacts are
compared to the current market valuation of the enterprise to calculate the Climate Value at Risk
of the company. Ralite and Thomä (2019) use a sensitivity factor based on the correlation between
GDPgrowth and share prices found in the stress tests of the European SystemicRisk Board (ESRB)
to turn GDP impacts into stock price changes. Allen et al. (2020) use a dividend discount model
(DDM), which translates their results at the level of sectoral value-added into dividends and thus
stock value. Vermeulen et al. (2018, 2019) assign sector-specific transition vulnerability factors and
prospected equity returns to assets and securities in 56 industries (using NACE categories). The
vulnerability factors are based on the amount of carbon emissions used to generate value-added.
In addition, they employ their own survey data to estimate the corporate loan exposures of the
largest Dutch banks.

4.2.3 Include financial network dynamics

Financial networks play an important role in spreading financial risks that had originally affected
only one counterparty (Bateson & Saccardi, 2020; Battiston et al., 2017; Mandel et al., 2021;
Roncoroni et al., 2021). The direct financial risks posed by climate change might seem manage-
able at first sight, but the asset price revaluations that they can trigger can be much larger than
the initial shock. Some methodologies thus consider amplification mechanisms and propagation
in financial markets. These amplifications are conceptualized as network effects, “contagion”
(Roncoroni et al., 2021) or “second round effects” (Battiston et al., 2017).
Models of loss contagion among banks have been explored widely in the aftermath of the Great

Financial Crisis of 2007. This literature, which focuses on the role of interbank markets (Georg,
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2013; Krause &Giansante, 2012) has been a starting point to consider the role of networks in trans-
mitting climate-related shocks (Bateson & Saccardi, 2020; Roncoroni et al., 2021). However, there
are also multiple indirect network effects that can amplify initial shocks. First, rapid revaluations
of certain assets can translate into a broad decline of asset prices through balance sheet readjust-
ments and fire-sales (see, e.g., Krishnamurthy, 2010 or Shleifer & Vishny, 2011). In such a case,
a decline in the price of some assets deteriorates the balance sheet of investors, causing them to
liquidate other assets, which in turn lowers prices and deteriorates balance sheets even further.
Recently, such fire-sale dynamics have been added as “third-round effects” to models of financial
contagion in the case of climate-related risks (Roncoroni et al., 2021). Second, a related channel of
contagion could be activated by the sudden revision of expectations. Herding behavior (Kiyotaki &
Moore, 2002) and speculationmay exacerbate climate-related risks due to a lack of information on
the change in fundamentals (Jaffe, 2020; Palao & Pardo, 2017). Herding would be problematic, if
there was evidence that investors base their expectations on similar observable events. An emerg-
ing literature has emphasized the role of “climate sentiments”, that is, investors’ expectations of
future profitability and thus investment preferences under climate change, in shaping climate
risk dynamics (Dunz et al., 2021). For example, “Climate sentiments” run high during times of
attention-grabbing events such as UN Conferences of the Parties (COP) and have a larger effect
on stock prices during those times (Santi, 2021). Finally, there are a range of possible mechanisms,
which have not been explored in the climate risk case. These include default cascades (Allen &
Gale, 2000) and liquidity crunches (Gai et al., 2011).
In the literature we review, most methodologies limit themselves to evaluating first-round

effects, i.e. the asset price changes in direct response to a scenario-induced economic shock.
Exceptions are Battiston et al. (2017), who introduce network effects in the form of a liquidity
shock through amodel of interbank lendingmarkets and Roncoroni et al. (2021). The latter extend
the interbank model with third-round effects from fire sales and fourth-round effects from losses
that go beyond banks’ ability to absorb the shock and consequently affect external creditors. Such
network effects are in some cases larger than the direct effects and might trigger wider systemic
implications.

4.2.4 Include non-financial market dynamics

Just as asset price changes can cascade through financial networks, climate-related costs to one
firm can also spread to other firms through supply chains or to customers through sellingmarkets.
Cahen-Fourot et al. (2021) construct amodel from Input-Output tables to show that a policy shock
initially affecting few industries can have material consequences along their supply chain. A cap
on fossil fuel production would strand assets in the extractive sector and lead to idle assets in
electricity and gas, basic metals, coke and refined petroleum products, transportation, etc. A key
finding from their analysis is that even if a sector is not directly affected by a risk, it may not
be a sound alternative to move financial capital into. A similar approach is used by Godin and
Hadji-Lazaro (2020) in the case of South Africa, with comparable qualitative results.

4.2.5 Choose the measure of impact

To interpret the results from methodologies, the measure of impact must be considered, i.e., how
asset price changes are reported. Sometimes, typical indicators of financial risk are reinterpreted
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for climate-related risks. UNEP FI (2019), as well as Dietz et al. (2016) and – for their distributed
shocks model – Battiston et al. (2017) calculate a ‘Climate Value at Risk’ (VaR). However, its pre-
cise definition differs acrossmethodologies.Mercer (2019) uses the annualized value of the impact
of climate scenarios on the portfolio return. Barker et al. (2015) analyze the impact of carbon tax-
ation on profit-before-tax of companies listed in the MSCI World index (a global weighted index
of around 1500 companies) and assume it serves as a proxy for the potential loss of future mar-
ket (and thus equity) value. Similarly, HSBC (2019) reports the change in the NPV of the profits
within an MSCI World index. CISL (2015) reports the 5-year performance of the portfolios they
have analyzed, for three different scenarios.
Another way of displaying the scenario performance of asset classes or portfolios is to report

the earnings at risk (Trucost, 2019) or the change in stocks’ share prices in comparison to those in
a baseline scenario.
Battiston et al. (2017) specify equity losses of banks as a percentage of their total equity holdings.

Vermeulen et al. (2019) state losses relative to the total assets of each sector (what they refer to as
“total stressed assets”). Equity changes can have three sources: changes to the risk-free interest
rate; exposure to carbon-reliant industries; and exposure to other industries. BlackRock (2019),
looking at corporate mortgage backed securities, reports the increase in expected default rates on
these instruments. Trucost (2019b) uses scenario-led methodologies to test the impact of climate-
related risks on credit or corporate bond ratings. Finally, some methodologies opt for reporting
risk scores or ratings for assets, portfolios or even sovereigns. The CRISmethodology, put forward
by Lepousez et al. (2017), uses detailed information on physical hazards and asset exposure to
derive scoreboards for individual assets. These include (for a corporate bond) information on the
hazards that the business activity is most exposed to and the locations that are most at risk. They
report an overall score on a scale from 0 to 99 instead of a monetary measure. We do not showcase
them in Table 2.

4.3 Reported asset price changes

In this section, we present the academic and industry contributions that have already tried to
estimate the impact of climate-related risks on asset prices.We review themain estimates available
in the literature for the future impact of physical and transition costs on financial assets as opposed
to historical events, which we covered in Section 2.
Table 2 summarizes the results. We report (1) the types of risk under consideration, (2) the

portfolio or index that is exposed to the risks, (3) the measure of impact, (4) the asset classes
considered and (5) the time horizon of the scenario analysis or, if applicable, the assumed year of
the stress test. To group scenarios, we refer to the relative temperature increase over pre-industrial
levels by the end of the century that is assumed in the scenario. Where this information is not
readily available, we refer to the names given by the authors.
Looking at the results, stress tests tend to expose more extreme asset price or earnings changes.

Especially in harsher scenarios, stress tests give estimates at the upper end of the spectrum. Ralite
and Thomä (2019) report a negative change in share prices of up to 60% under their “too late and
too sudden” scenario. Similarly, Trucost (2019) estimate that earnings at risk in a hypothetical sce-
nario can be as high as 140% in the case of utilities (although they show how heterogeneously this
risk is distributed within the industry). Equally grim is the outlook on utilities under a stringent
transition scenario by Barker et al. (2015), estimating a profit loss of up to 76.5%. Battiston et al.
(2017) report high increases in equity loss if second-round losses via the interbank lendingmarkets
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are considered. The stress test of the Dutch financial sector by Vermeulen et al. (2019) exempli-
fies that the co-occurrence of two shocks, i.e. technology and policy, can significantly exacerbate
transition risks for financial actors. Long-term studies focusing on profitability of portfolios, such
as HSBC (2019) and Mercer (2019), report relatively minor losses. Research using VaR as a mea-
sure of future impacts on asset prices report relatively high values, see the results by Dietz et al.
(2016) and UNEP FI (2019). The latter also shows that a global, broadly invested portfolio will
likely suffer more from both transition and physical risk scenarios than the top 1200 companies.

5 RESEARCH GAPS

Despite a leap in the breadth and depth of the literature on climate-related risks in asset prices,
some research challenges remain. First, more must be done to better understand how climate
events can trigger abrupt price corrections on financial markets. Second, a recent push to improve
the available climate-related data raises issues for financial market participants and supervisors.
Third, there are implications for the forward-looking methodologies, which must adapt to the
changing data landscape.

5.1 Potential risks to financial stability

From extreme weather events to more stringent climate policies and litigation costs, climate-
related risk drivers abound. Empirical evidence tends to indicate that such climate risks are
not fully priced in by market participants, a fact which is often highlighted by policy-makers,
including central bankers and financial supervisors. This opens the door to potential sharp price
corrections as investors revise their expectations.
Our review of the backward-looking literature showed that additional climate-related informa-

tion overwhelmingly leads to changes in asset prices, which are predominantly negative. As we
have discussed at the outset of this paper, the sudden revision of expectations about the ability of
assets to generate a return or about the financial risks they face, may have consequences for finan-
cial stability. A better understanding of what could trigger such expectations revisions is key to
anticipate episodes of financial instability. However, there is currently no framework that offers
an explanation to when such a ‘Climate Minsky moment’ (Carney, 2018) would occur. Future
research will thus have to investigate what determines tipping points in the financial system.
Furthermore, little is known about how initial climate shocks on asset prices propagate and

are amplified by financial markets. Some pioneering work has already been done with financial
network models to assess such propagation and amplification mechanisms. They usually show
that indirect exposures to climate-related risks are material. Some banks can be severely affected
by them, even if they seem to have no exposure at first sight (see, e.g., Roncoroni et al., 2021).
Similarly, both physical and transition-related shocks can propagate along the economic value
chain, affecting economic actors well beyond those that are directly hit (see, e.g., Cahen-Fourot
et al., 2021). Such network effects are usually absent from forward-looking methodologies.
Another potential source of financial instability could come from the creation of a green bubble,

i.e. the overinvestment in low-carbon technologies and the heightened interest in financial assets
labeled as “green” or “ESG”, which has thus far seen very little empirical analysis (Semieniuk
et al., 2021). Given that sources of renewable energy now undercut certain fossil fuels in the cost of
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power generation (IRENA, 2021), the risk of a green bubblemay also rise, requiringmore research
to understand under which conditions it could emerge and burst.

5.2 Climate-related disclosures and financial supervisors

There is currently a push to develop common frameworks under which to report climate-related
disclosures. The guidelines set by the Task Force on Climate-Related Financial Disclosure (TCFD,
2017) are becoming the international standard for that. Such initiatives are supported by financial
supervisors, who increasingly tend to support mandatory disclosure guidelines for firms. Parallel
to that, policy-makers are also engaged in defining economic activities, which support the transi-
tion to a low-carbon economy and are thus eligible for green investment labels. The most notable
examples of such taxonomies are China’s Green Bond Endorsed Project Catalogue issued in 2015
and the EU’s Taxonomy for sustainable activities issued in 2021.
Such initiatives are welcome: more data will improve the assessment of climate financial risks.

However, further research should aim to understand which data best reflect firms’ and house-
holds’ exposure to climate-related risks. Transition risks are a case in point: exposure to transition
risks greatly depends on a firm’s current and future actions and investments to ensure its tran-
sition to low-carbon technologies. There is no consensus on what forward-looking indicators to
use to capture such plans. Current emissions, one of the main indicators used to assess transition
risks, are limited in this context.
Collecting the right information to assess climate-related risks is further complicated by the

fact that financial supervisors need such data from a diverse range of economic actors. Small
and medium enterprises (SMEs) represent a bottleneck in this respect. Knowledge about their
activities is needed to assess a banks’ exposure to climate-related risks, but SME’s capacity to
deliver the complex data required for climate risk assessments is limited. Future research should
Identify appropriate indicators that balance complexity and robustness.

5.3 Dealing with uncertainty in forward-looking methodologies

Financial firms are looking for better toolkits to assess their exposure to climate-related risk (see
for instance the survey of Gibbs et al., 2020).We identify two areas for further developing forward-
looking methodologies to meet this demand: dealing with uncertainty and reflecting financial
market dynamics.
Despite ever-greater efforts by climate science to understand the complex interactions in the

climate system, the unprecedented nature of climate changemeans that fundamental uncertainty
about future impacts will remain. Using multiple plausible scenarios and employing inter-model
comparison exercises (i.e. running a number of different models using the same set of scenarios)
are establishedmeans to deal with this uncertainty. As new knowledge about climate impacts and
their assigned probabilities constantly emerges, scenarios should be updated frequently to reflect
this change in what is deemed plausible. Methodologies should be flexible enough to quickly
adapt to updated scenarios.
Second, as highlighted above, the propagation of climate-related risks through financial and

non-financial networks remains understudied. A distinction must be made between the effects
of gradual changes to economic processes and shock scenarios. Treating the financial system as
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a force that shapes the macro-economy, through changing expectations about the realization of
climate risk, could help understand better the drivers of systemic risks.

6 CONCLUSIONS

In this paper, we review the literature studying the pricing of climate-related financial risks. We
summarize the current theoretical perspective on climate-related risks (encompassing physical,
transition and liability risks) and discuss how they enter asset pricing frameworks. We offer a
novel perspective on how climate-related risks materialize as economic costs for firms through
four distinct channels and how these economic costs translate into financial asset price changes.
We structure the backward-looking literature (i.e., literature using historical-empirical data),

distinguishing two types of assets (negatively and positively exposed assets) and four different mea-
sures of impact (financial asset prices, real estate prices, cost of capital and risk assessment). We
show that new information about climate-related risk drivers predominantly leads to negative
effects across the four measures of impact. Only in the categories of risk assessment and financial
asset prices, there seems to be some ambiguity in findings. When an asset is positively exposed to
transition risks (as, for example, in the case of renewable energy firms), most papers in our review
find that transition risk drivers have positive effects on the asset prices, or that they reduce the
risk exposure or cost of capital of the firms. We conclude that climate-related risks do influence
asset prices and that results are usually robust to a wide range of alternative specifications of asset
pricingmodels. At the same time, the results suggest that climate-related risks are not fully priced.
We find mixed evidence on whether risks are priced efficiently.
Given the current turn towards forward-looking methodologies, we also review the literature

focusing on the asset price impact of long-term climate and transition scenarios and stress tests.
This literature is mostly guided by considerations around tail risk and plausibility rather than
probability. We highlight the heterogeneity of the methodological choices to make in this context,
including scenarios, the relevant timehorizon, themethod to determine the exposure of an asset to
climate-related risks, the translation of economic costs to financial costs, and others. Model com-
ponents, which study the amplification ormitigation of initial effects through financial networks,
are only sparingly applied.
This heterogeneity in approaches and scope of forward-looking methodologies makes it diffi-

cult to compare results. Most methodologies focusing on transition risks test at least one climate
mitigation scenario (in which the anthropogenic mean temperature increase stays below two
degrees). Some choose instead to juxtapose a “smooth” and a “sudden” transition path. Method-
ologies focusing on the impact of physical climate risks employ at least one scenario, where
the two-degree-target is overshot. The losses estimated both by the stress test and the long-term
approaches are economically significant, but stress testswith their focus on tail risks report starker
estimates. Network effects and co-occurrence of risk are likely to substantially increase initial
financial losses.
Stress tests seem to be the avenue thatmost financial regulators and private actors opt for today.

Given the remaining uncertainty over the exact consequences financial actors need to expect from
both climate change and climate policy, stress testing is a promising way to periodically receive
information about financial reactions to plausible scenarios. Regulators and central banks should
continue to build their expertise in climate stress testing. Their emphasis should be in detecting
systemic risks and including the analysis of the potential of propagation of initial shocks through
production and financial networks.
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Finally, while regular stress tests can keep regulators and financial actors informed aboutworst-
case scenarios, long-term scenario analysis can improve their understanding of alternative climate
futures under fundamental uncertainty. Their use and scope should be increased and refined,
rather than concentrated around a few scenarios that seemmost likely at a particular point in time.
The impact of physical climate risk drivers should be considered in combination with transition
and liability risks, as the future will most likely hold a mix of the three.
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ENDNOTES
1These interactions are non-trivial. To name but two examples, higher transition risks from stricter climate policies
are likely to limit physical risks in the future. Higher physical risks from unmitigated climate change on the other
hand will spur litigation against governments and firms responsible for inaction. For a thorough discussion about
the possible interactions of risk drivers, see Basel Committee on Banking Supervision (2021).

2When explicit asset pricingmodels are used, climate-related risks are included as a risk factor after being estimated
through common methodologies (e.g., Fama & MacBeth, 1973).

3See Battiston and Martinez-Jaramillo (2018) for a review of existing models.
4While scientists increasingly use attribution science to link ‘natural’ catastrophes to man-made climate change,
epistemological difficulties persist (Eckstein et al., 2020, p. 10). Some weather phenomena have increased in fre-
quency, intensity and duration concurrentlywith awarming atmosphere (Committee on ExtremeWeather Events
et al., 2016). This section reviews the financial impacts of all event types, which could be attributed to climate
change in principle, regardless of whether the authors use attribution science to create a causal link between a
physical event and climate change.

5Labeling the scenarios is a delicate matter, as it can involve value statements. Most contributions, like ours, use
labels to make scenarios easily recognizable. Hausfather and Peters (2020) point out, however, that referring to
the “no-policy-action scenarios” as “business-as-usual (BAU) scenarios” overestimates the likelihood of such a
scenario.
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APPENDIX

TABLE A1 Backward-looking literature studying assets negatively exposed to physical climate risk drivers

Authors
Asset
class

Climate risk
driver

Measure of
impact

Effect on
measure Results

Bin and
Landry
(2013)

Real Estate Disaster (real) asset
price

Negative −5.7 to −8.8% on prices for houses in
an affected area after hurricanes
materialize. Other houses trade
with a risk premium of 6.0–20.2% if
located in a potential flood zone

Bernstein
et al.
(2019)

Real Estate Sea-level rise
(SLR)

(real) asset
price

Negative −7% discount relative to similar but
unaffected properties

Murfin and
Spiegel
(2020)

Real Estate Sea-level rise (real) asset
price

No significant
effect

No price effect

Atreya and
Ferreira
(2015)

Real Estate Disaster (real) asset
price

Negative Houses in inundated areas trade with
a markdown of 36–48% after the
flood

Baldauf et al.
(2020)

Real Estate Sea-level rise (real) asset
price

Negative (lower
pricies in
“believer”
neighborhoods
than “denier”
neighborhoods)

Houses located in “denier”
neighborhoods cost around 7%
more than those in “believer”
neighborhoods

BlackRock
(2019)

Bonds
(Munici-
pal)

Hurricanes asset price No significant
effect

No price effect of heightened exposure
of municipal bonds to storm risk

Kölbel et al.
(2020)

Credit-
default
swaps

Custom climate
risk measure
based on
language
algorithm

asset price No significant
effect

For physical risks, there is no
statistically significant impact on
CDS spreads

Makridis
(2018)

Stocks (all
sectors)

extreme
temperatures

asset price Negative −0.1 percentage point decline in stock
returns for one standard deviation
increase in monthly degrees at
extreme temperature (below 15
degrees or above 84◦F)

Anttila-
Hughes
(2016)

Stocks
(energy)

News (extreme
temperatures)

asset price Negative −1% (temperature records) and + 3%
(melted ice shelves) return over 10
days

Anttila-
Hughes
(2016)

Stocks
(energy)

News (Melting
polar ice)

asset price Positive +3% return over 10 days after the news

Bansal et al.
(2019)

Stocks (all
sectors)

extreme
temperatures

asset price Negative A one standard deviation increase in
the long-run temperature leads to a
3% decline in equity valuations

(Continues)
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TABLE A1 (Continued)

Authors
Asset
class

Climate risk
driver

Measure of
impact

Effect on
measure Results

Griffin et al.
(2019)

Stocks (all
sectors)

extreme
temperatures

asset price Negative Cumulative excess returns of −0.42%,
more negative for costlier (−1.38%)
and longer (−0.68%) Extreme High
Surface Temperature (EHST)
events. No effects for extreme cold
temperatures

Bertolotti
et al.
(2019)

Stocks
(electric
utilities)

Disaster asset price Negative −1.5% stock prices and +6 percentage
points implied volatility for firms
affected by the hurricane

Choi et al.
(2020)

Stocks (all
sectors)

extreme
temperatures

asset price Negative −48 bps in the long-short
emission-minus-clean portfolio

Alok et al.
(2020)

Stocks (all
sectors)

Disaster asset price Negative Post-disaster, portfolio weights of
stocks linked to disaster zones
decrease for all funds regardless of
location, but far more for funds
close to the disaster zone

Faccini et al.
(2021)

Stocks (U.S.
common
stocks)

News asset price No significant
effect

No price effects detected

Goldsmith-
Pinkham
et al.
(2021)

Bonds
(Munici-
pal)

Sea-level rise asset price Negative A one standard deviation increase in
SLR exposure leads to a 2–5%
reduction in the present value of a
municipal bonds or an increase of
1% to 3% in the volatility of local
government cash flows

Painter
(2020)

Bonds
(Munici-
pal)

Sea-level rise cost of capital Negative U.S. counties exposed to physical risk
face higher costs of refinancing: A
one percent increase in
climate-related risk increases the
annualized issuance costs by 23.4
basis points for long-term maturity
bonds

Balvers et al.
(2017)

Stocks (all
sectors)

extreme
temperatures

cost of capital Negative The cost of equity capital rises by
0.22% due to the additional burden
of climate-related risks,
corresponding to a present value
loss of 7.92%

Klomp
(2014)

Loans
(Com-
mercial
banks
global)

Disaster risk Negative Banks’ distance-to-default decreases
when home country is hit by a
large-scale disaster. Disasters also
lead to a credit-crunch, especially in
emerging economies

Noth and
Schüwer
(2018)

Loans
(Com-
mercial
banks
US)

Disaster risk Negative More non-performing loans and
higher foreclosure ratios in the
years following an event

Kruttli et al.
(2019)

Stocks (all
sectors)

Disaster risk Negative (higher
implied
volatility)

+5–10 percentage points implied
volatility for firms affected by the
hurricane
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TABLE A2 Backward-looking literature studying assets negatively exposed to transition risk drivers

Authors
Asset
class

Climate risk
driver

Measure of
impact

Effect on
measure Results

Kölbel et al.
(2020)

Credit-default
swaps

Custom climate
risk measure
based on
language
algorithm

asset price Negative Transition risks increase CDS spreads
especially after the Paris
Agreement. Transition exposed
CDS experiences reduction in the
range of 71–119 bps after the paris
agreement

Chava (2014) Stocks (S&P 500
& Russell
2000)

Custom Envi-
ronmental
Concern
Measures

asset price Negative 7% carbon premium on stocks

Bernardini
et al.
(2021)

Profits [stocks,
if listed]
(Utility
sector)

Policy shock asset price Negative Falling profits of high carbon firms.
Lower profits also resulted in falling
stock prices

Ramiah et al.
(2016)

Stocks (all
sectors)

Policy shock asset price Positive Environmental regulations increase
volatility and can generate
abnormal returns in the range of
30–40%. Even if most of the news
items refer to stricter regulation,
most abnormal returns are positive.

Görgen et al.
(2019)

Stocks (all
sectors)

Custom Brown-
Green-Score
(BGS)

asset price No signifi-
cant
effect

The Brown-minus-Green portfolio has
a statistically insignificant negative
risk premium of−0.097% per month

Faccini et al.
(2021)

Stocks (U.S.
common
stocks)

News asset price Negative There is only evidence that news
about US climate policy is priced,
and more pronounced after 2012.
The spread’s alpha ranges between
0.46% and 0.96% for decile
portfolios.

Alessi et al.
(2021)

Stocks (all
sectors)

Custom score asset price Positive Markets attach a negative risk
premium to greener portfolio
(disclosing environmental
performance and with lower
emissions). This means dirty stocks
trade with a premium. Markets
attach a risk factor if quality of
disclosure is accounted for
alongside emission performances

Wen et al.
(2020)

Stocks
(included in
Shenzhen
Pilot ETS)

Policy shock asset price Positive The stock returns of companies
participating in the Shenzhen ETS
pilot experience positive returns
after the start of the pilot, indicating
a carbon premium. The authors
theorize that this is because of the
higher carbon exposures of
companies trading under the ETS

(Continues)
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TABLE A2 (Continued)

Authors
Asset
class

Climate risk
driver

Measure of
impact

Effect on
measure Results

Duan et al.
(2020)

Bonds (all
sectors US)

Carbon
intensity

asset price Negative Presence of significant carbon alphas
on bonds (average +16 basis points),
attributed to investor’s
underreaction

Noailly et al.
(2021)

Stocks News index asset price Negative Four basis points drop in excess stock
returns for firms with one-SD above
mean CO2 emissions, following a
one-SD increase in EnvP news index

Matsumura
et al.
(2014)

Stocks (S&P
500)

Carbon
emissions

asset price
(firm value)

Negative Median +$2.3bn of market
capitalization for firms disclosing
carbon emissions. For each
additional thousand metric tons of
carbon emissions, firm value
decreases by $212,000

Atanasova
and
Schwartz
(2019)

Stocks (Fossil
fuel firms)

Growth of
undeveloped
oil reserves

asset price
(Tobin’s Q)

Negative A 1%-increase in investment in
undeveloped proven reserves
decreases Tobin’s Q by .00002

Chava (2014) Loans (S&P 500
& Russell
2000)

Custom Envi-
ronmental
Concern
Measures

cost of capital Negative 20% higher loan rates for
environmentally hazardous firms
(25 bps)

Nguyen et al.
(2020)

Stocks (all
sectors
Australia)

Policy shock cost of capital Negative Higher cost of capital (+2.5–3 basis
points cost of equity) for polluting
firms after the ratification of the
Kyoto Protocol. Emitters’ implied
cost of equity increases by 2.5%
post-ratification

Nguyen et al.
(2020)

Loans (all
sectors
Australia)

Policy shock cost of capital Negative Higher cost of capital (+5–6 basis
points cost of debt) for polluting
firms after the ratification of the
Kyoto Protocol. Relative to
non-emitters, this is an increase in
the interest rate spread of 5.4%
post-ratification

Jung et al.
(2018)

Loans & Bonds
(all sectors
Australia)

Carbon
emissions

cost of capital Negative +38–62 basis points in cost of debt for
one standard deviation in scope 1
emissions

Huang et al.
(2019)

Loans Policy shock cost of capital Negative Loan spread to high-polluting firms
increases by 5.5% (i.e., a higher risk
premium after the policy shock);
default rates of these firms rose by
around 50%

Delis et al.
(2019)

Loans Policy shock cost of capital Negative Fossil fuel firms experience rising
credit cost by 16 basis points

(Continues)
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TABLE A2 (Continued)

Authors
Asset
class

Climate risk
driver

Measure of
impact

Effect on
measure Results

Palea and
Drogo
(2020)

Loans and
bonds (Non-
financial
sectors
Eurozone)

Carbon-
intensity/Policy
shock

cost of capital Negative A 1-point increase in carbon itensity
(Scope 1 & 2) increases cost of debt
by 5%. After the Paris Agreement,
while high emitters’ cost of debt was
not affected (because it was already
priced), low emitting industries saw
their cost of debt increase

Garzón-
Jiménez
and Zorio-
Grima
(2021)

Stocks (all
sectors
Emerging
Markets)

Carbon
emissions

cost of capital Negative A 1%-increase in scope 1 and 2
emissions increases cost of equity
by 0.03 units

Ilhan et al.
(2021)

Options (S&P
500)

Carbon
intensity

risk Negative Downward tail risk increase (very)
sligtly with industry’s carbon
intensity

Byrd and
Cooper-
man
(2018)

Stocks (Coal) News risk No signifi-
cant
effect

0.05%–3.24% (mean 1.2%) CAR upon
positive news; no significant
reaction to negative news

Monasterolo
and de
Angelis
(2020)

Stocks Policy shock risk No signifi-
cant
effect

Carbon-intensive assets are not yet
penalized

TABLE A3 Backward-looking literature studying assets positively exposed to transition risk drivers

Authors Asset class
Climate risk
driver

Measure of
impact

Effect on
measure Results

Ravina and
Kaffel
(2020)

Stocks (all
sectors
Europe)

Policy shock Positive asset price Higher returns (0.2%-−0.34%) on
EU-ETS compliant portfolios (i.e
not paying a carbon price)

Bernardini
et al.
(2021)

Profits [stocks,
if listed]
(Utility
sector)

Policy shock No significant
effect

asset price No effects for low carbon firms.

Ramelli et al.
(2019)

Stocks News Positive asset price Transition-proof companies
experienced positive abnormal
returns of 62 basis points ten days
after the election of Donald Trump
and 101 basis points after the
nomination of Scott Pruitt as head
of EPA.

Ravina
(2020)

Bonds (all
sectors
Europe)

Policy shock Positive asset price Higher returns (0.03-−0.13%) on
EU-ETS compliant portfolios (i.e
not paying a carbon price)

Soh et al.
(2017)

Stocks (all
sectors US)

Carbon
intensity

Positive asset price Low-carbon portfolios outperform
high-carbon one (Abnormal returns
of 3.5%–5.4%)

(Continues)
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TABLE A3 (Continued)

Authors Asset class
Climate risk
driver

Measure of
impact

Effect on
measure Results

Cheema-Fox
et al.
(2019)

Stocks (all
sectors US
and Europe)

Carbon
emissions

Positive asset price +2% annual alpha on decarbonised
porfolios

Noailly et al.
(2021)

Equity of
cleantech
firms

News index Positive cost of
capital

A higher EnvP news index is
associated with cleantech startups
receiving venture capital funding at
a greater probability

Kempa et al.
(2021)

Loans
(renewable
energy firms)

Policy shock Positive cost of
capital

A one standard deviation increase in
the OECD Environmental Policy
stringency Index decreases the costs
of debt of renewable energy firms
by 19% relative to those of
non-renewable energy firms.
Environmental policies are likely to
have an risk-reducing effect. This
results in a lower risk premium on
renewables of .15–.4 basis points

Cui et al.
(2018)

Loans (Banks
China)

Policy shock Positive risk Banks with a higher green credit ratio
experience a lower rate of
non-performing loans

Monasterolo
and de
Angelis
(2020)

Stocks Policy shock Positive risk The systemic risk associated with
low-carbon indices drops after the
announcement of the Paris
Agreement. The relative weight of
low-carbon indices in an optimal
portfolio increases after the
announcement
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‘Climate value at risk’ of global financial assets
Simon Dietz1,2*, Alex Bowen1, Charlie Dixon2 and Philip Gradwell2

Investors and financial regulators are increasingly aware of
climate-change risks. So far, most of the attention has fallen
onwhether controls on carbon emissions will strand the assets
of fossil-fuel companies1,2. However, it is no less important
to ask, what might be the impact of climate change itself
on asset values? Here we show how a leading integrated
assessment model can be used to estimate the impact of
twenty-first-century climate change on the present market
value of global financial assets. We find that the expected
‘climate value at risk’ (climate VaR) of global financial assets
today is 1.8% along a business-as-usual emissions path.
Taking a representative estimate of global financial assets,
this amounts to US$2.5 trillion. However, much of the risk is
in the tail. For example, the 99th percentile climate VaR is
16.9%, or US$24.2 trillion. These estimates would constitute
a substantial write-down in the fundamental value of financial
assets. Cutting emissions to limitwarming to nomore than2 ◦C
reduces the climate VaR by an expected 0.6 percentage points,
and the 99th percentile reduction is 7.7 percentage points.
Includingmitigation costs, the present value of global financial
assets is an expected 0.2% higher when warming is limited to
no more than 2 ◦C, compared with business as usual. The 99th
percentile is9.1%higher. Limitingwarming tonomore than2 ◦C
makesfinancial sense to risk-neutral investors—andevenmore
so to the risk averse.

The impact of climate change on the financial sector has been
little researched so far, with the exception of some kinds of insur-
ance3. Yet, if the economic impacts of climate change are as large
as some studies have suggested4–6, then, because financial assets are
ultimately backed by economic activities, it follows that the impact
of climate change on financial assets could also be significant.

The value of a financial asset derives from its owner’s contractual
claim on income such as a bond or share/stock. It is created by an
economic agent raising a liability that will ultimately be paid off
from a flow of output of goods and services. For example, a firm
pays its shareholders’ dividends out of its production earnings, and
a household usually pays its mortgage from its wages. Output is the
result of a production process, which combines knowledge, labour,
intermediate inputs and non-financial or capital assets. Therefore,
there are two principal ways in which climate change can affect the
value of financial assets. First, it can directly destroy or accelerate
the depreciation of capital assets, for example through its connection
with extremeweather events7. Second, it can change (usually reduce)
the outputs achievable with given inputs, which amounts to a change
in the return on capital assets, in the productivity of knowledge8,
and/or in labour productivity and hence wages9.

Why is it important to know the impact of climate change on asset
values? Institutional investors, notably pension funds, have been in
the vanguard of work in this area10: for them, the possibility that

climate change will reduce the long-term returns on investments
makes it a matter of fiduciary duty towards fund beneficiaries,
which is why it is not unusual to see pension funds advocating
significant emissions reductions11. Despite this, levels of awareness
about climate change remain low in the financial sector as a whole3,
so one purpose of this exercise is to raise them. For their part,
financial regulators need to ensure that financial institutions such
as banks are resilient to shocks, hence their growing interest in
the possibility of a climate-generated shock12,13. Value at risk (VaR)
quantifies the size of loss on a portfolio of assets over a given
time horizon, at given probability. Thus, our estimates of VaR from
climate change can be seen as a measure of the potential for asset-
price corrections due to climate change.

The difficult question in practice is how to construct a global
estimate of the impact of climate change on financial assets, given
the paucity of existing research. How can we get a handle on
the magnitude of the effect? Typical approaches in the finance
industry involve directly estimating the returns to different asset
classes in different regions, as well as the co-variances between
them14. In principle, these could be modelled as being dependent
on climate change, yet at present there is a lack of knowledge of the
economic/financial impacts of climate change at this granularity.

In contrast, it is possible to show how existing, aggregated
integrated assessment models (IAMs) can be used to obtain a first
estimate of the climate VaR, that is, the probability distribution of
the present market value (PV) of losses on global financial assets
due to climate change. The argument is in three stages.

First, in the benchmark valuation model of corporate finance, an
asset is valued at its discounted cash flow. For a stock, this is the PV
of future dividends. Of course, many stocks do not pay dividends
(so-called ‘growth stocks’), and their value in the short run lies in
expected increases in the stock price. However, in the long run a
dividend must be paid, else the stock is worthless. For a bond, the
discounted cash flow is the PV of future interest payments.

Second, corporate earnings account for a roughly constant share
ofGDP (gross domestic product) in the long run15, so those earnings
should grow at roughly the same rate as the economy. This is
related to Kaldor’s famous ‘stylized fact’ that the shares of national
income received by labour and capital are roughly constant over
long periods of time16,17. As corporate earnings ultimately accrue
to the owners of the financial liabilities of the corporate sector in
one form or another, the (undiscounted) cash flow from a globally
diversified portfolio of stocks should also grow at roughly the same
rate as the economy15.

Third, assuming debt and equity are perfect substitutes as stores
of value, which is consistentwith the neoclassicalmodel of economic
growth underpinning those aggregated IAMs that represent it
explicitly, the same relationship will govern the cash flow from
bonds, the other principal type of financial asset. According to
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Table 1 |The present value at risk of global financial assets from climate change between 2015 and 2100—the climate VaR.

Emissions scenario 1st pctl. 5th Mean 95th 99th

BAU (expected warming of 2.5 ◦C in 2100) 0.46% 0.54% 1.77% 4.76% 16.86%
Mitigation to limit warming to 2 ◦C with 2/3 probability 0.35% 0.41% 1.18% 2.92% 9.17%

the Modigliani–Miller theorem of corporate finance, under certain
assumptions, any future changes in capital structure will not change
the expected value of today’s aggregate portfolio18,19. Therefore,
we can use forecasts of global GDP growth with and without
climate change to make a first approximation of the climate VaR of
financial assets.

In particular, the ingredients for the calculation are IAM-based
estimates of the rate of GDP growth along various scenarios (the
basic climate VaR is a comparison, for given emissions, of GDP
growth after climate change with counterfactual GDP growth with-
out climate change), a schedule of discount rates, and an estimate of
today’s stock of global financial assets (see Methods). It is important
to note that the discount rate applied in valuing a portfolio of
privately held financial assets is that of a private investor, and is
given by the opportunity cost of capital appropriate for the riskiness
of the portfolio. Thus, the extensive literature on social discount
rates for appraisal of climate-change policies20 is not relevant. We
also highlight that the climate VaR, by definition, includes only the
effect on asset values of climate impacts (that is, adaptation costs
and residual damages). It does not include mitigation costs, which
for a low-emissions path could be considerable. However, at the end
of this paper we do tackle the wider issue of the PV of assets when
mitigation costs are also included.

We use an extended version of Nordhaus’s DICE model21 to
estimate the impact of climate change on GDP growth. Our version
allows for a portion of the damages from climate change to fall
directly on the capital stock22,23, rather than simply reducing the
output that can be obtained fromgiven capital and labour inputs (see
Methods). Thus, it is capable of representing the two broad ways in
which climate change affects financial asset values that we identified
above, and it has been argued more generally that such a repre-
sentation of climate impacts is important in understanding the full
potential for climate change to compromise growth in the long run8.

We conduct a Monte Carlo simulation of DICE to estimate the
VaR at different probabilities. We focus on four key uncertainties in
the model, identified by previous studies (see Methods)21,24,25. The
first is the rate of productivity growth, which in the neoclassical
model is the sole determinant of long-run growth of GDP per
capita, absent climate damages. Productivity growth influences the

stock of assets in the future, but, because unmitigated industrial
carbon dioxide emissions are proportional to GDP, it also influences
warming and the magnitude of climate damages. The second
is the climate sensitivity parameter, that is, the increase in the
equilibrium global mean temperature in response to a doubling of
atmospheric carbon. The third is an element of the damage function
linking warming with losses in GDP. In particular, we parameterize
uncertainty about a higher-order term in the damage function5. The
uncertainty is best regarded as capturing the range of subjective
views about the potential for catastrophic climate impacts in the
region of at least 4 ◦C warming. The fourth controls the costs of
emissions abatement.

Table 1 provides estimates of the impact of climate change over
the course of this century on the PV of global financial assets. Along
the DICE baseline or business-as-usual (BAU) emissions scenario,
in which the expected increase in the global mean temperature in
2100, relative to pre-industrial, is about 2.5 ◦C (see Supplementary
Information), the expected climate VaR of global financial assets
today is 1.8%. As Table 1 indicates, there is particularly significant
tail risk attending to the climateVaR. The 95th percentile is 4.8% and
the 99th percentile is 16.9%. This is important, because distribution
percentage points deep in the tail have particular relevance in some
financial risk management regimes, such as insurance (for example,
the EU Solvency II Directive).

Analysis with Spearman’s rank correlation coefficients (a linear
regression model is a poor overall fit of the data) indicates that the
most important of the three uncertain parameters in determining
the expected climate VaR on BAU is the climate sensitivity, followed
by the initial rate of productivity growth, with the curvature of the
damage function least important (see Supplementary Information).
Recall that abatement costs do not affect the climate VaR by
definition. Nonetheless, whereas there is an evidential basis on
which to calibrate uncertainty about productivity growth and
climate sensitivity, the same cannot be said of the curvature of
the damage function (see Methods), so in the Supplementary
Information we carry out sensitivity analysis on an alternative
calibration that concentrates probability mass in the middle of
the range of estimates in the literature, rather than spreading it
uniformly. We find that the expected climate VaR is a little lower
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Figure 1 | The impact of climate change on discounted cash flows from the stock of global financial assets. The initial stock of assets is US$143 trillion for
these calculations. The left panel shows discounted cash flows under business as usual (BAU), the right panel those under the mitigation scenario. Dashes
are mean/expected values; the column corresponds with the 5–95% range.
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Table 2 | The di�erence in the present value of global financial
assets between mitigation to 2 ◦C and business as usual.

1st pctl. 5th Mean 95th 99th

2 ◦C–BAU −0.61% −0.48% 0.22% 1.77% 9.11%

(at 1.5%), but that the tail risk is considerably lower (at for example,
9.6% at the 99th percentile).

Table 1 also shows the equivalent climate VaR under a repre-
sentative path of emissions reductions to limit the increase in the
global mean temperature to no more than 2 ◦C, with a probability
of 2/3 (see Methods). In this scenario the expected climate VaR is
1.2%, the 95th percentile is 2.9% and the 99th percentile is 9.2%.
The expected reduction in the climate VaR due to mitigation is
0.6 percentage points, the 95th percentile reduction is 1.8 percentage
points and the 99th percentile is 7.7 percentage points. Mitigation is
hence particularly effective in reducing the tail risk.

How large is the climate VaR in absolute terms? Answering
this question requires an appropriate estimate of the current stock
of global financial assets. There is more uncertainty about this
than one might perhaps imagine. The Financial Stability Board
nonetheless puts the value of global non-bank financial assets
at US$143.3 trillion in 201326. This implies that the expected
climate VaR under BAU is US$2.5 trillion, rising to US$24.2 trillion
at the 99th percentile. Under the 2 ◦C mitigation scenario it is
US$1.7 trillion, rising to US$13.2 trillion at the 99th percentile.

These estimates are not inconsiderable, particularly in the tail.
To put them into perspective, the total stock market capitalization
today of fossil-fuel companies has been estimated at US$5 trillion27.
And whereas intra-day stock market movements are frequently
considerably higher than our mean estimates, it can be argued that
stock markets suffer from excess volatility, so increases in climate
risk could trigger larger stock price movements than our estimates
would suggest28. The risk is likely to be difficult to hedge fully, given
the global incidence of climate impacts and the potentially long
holding periods that would be required29. The nature of climate
risk is such that, if it crystallizes, there would be no subsequent
reversion to the previous trend growth path. Also, our approach
assumes that debt will be affected as well as equities, and it
smoothes the full effect of extreme weather on short-run volatility
in economic performance.

Figure 1 analyses the contribution to the climate VaR of global
financial assets today from impacts at different stages of the century.
It makes clear that most of the climate VaR arises in the second half
of the century. This suggests that the climate VaR ought to depend
sensitively on the discount rate chosen. In the Supplementary
Information, we apply an alternative, high discount rate of 7%
initially (compared with 4.07%; see Methods) and find that the
expected climate VaR along BAU is 1%, the 95th percentile is 2.4%
and the 99th percentile is 7.7%. However, such a high discount rate
is difficult to justify in relation to historical equity and bond returns
at the global scale30.

Table 2 and Fig. 2 compare the PV of global financial assets along
the 2 ◦C mitigation scenario with its counterpart along BAU, when
mitigation costs are included. The expected value of global financial
assets is 0.2% higher along the mitigation scenario, although, as
Fig. 2 shows, in fact roughly 65% of the distribution lies below
zero, meaning that the PV of global financial assets is larger under
BAU. This reflects the reduction in asset values brought about by
paying abatement costs in the economy—including, for instance, the
stranded assets of fossil-fuel companies—especially in the coming
decades. It is consistent with cost–benefit analyses of climate change
that show a horizon stretching beyond the end of this century may
be necessary for emissions reductions to increase social welfare, as

−0.020 −0.015 −0.010 −0.005 0

PV assets, 2 °C−BAU (%)

0.005 0.010 0.015 0.020
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 2 | The cumulative distribution function of the di�erence, in
per cent, between the present value of global financial assets between
mitigation to 2 ◦C and business as usual. Note the range of the x axis is
truncated and should be read as ranging from−0.01% to 0.01%.

measured by net present value4. Similarly, if the non-market impacts
of climate change (for example, on human health and ecosystems)
would be greater than the damages represented in our version of
the DICE model, then this would mean that the overall net present
economic value of emissions reductions is greater than their net
present financial value. Even so, because the PV of global financial
assets is higher in expectations along the 2 ◦C path, mitigation is
still preferred from the narrower perspective of financial assets, and
more so the higher is risk aversion.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
The present value of global financial assets and value at risk. The PV of global
financial assets is the discounted cash flow arising from holding these assets. For a
globally diversified portfolio of stocks that is assumed to grow at the same rate as
the economy,

PV=D
T∑
t=0

[
t∏

s=1

(
1+gt

)
(1+ rt)

]
whereD is the initial aggregate dividend payment, and gt and rt are the GDP growth
rate and the discount rate at time t respectively. The climate VaR, in absolute terms,
is the difference in PV with and without climate change, which reduces to

VaR=D
T∑
t=0

[
t∏

s=1

(
1+ ḡt

)
(1+ rt)

−

t∏
s=1

(
1+g c

t

)
(1+ rt)

]

where ḡ is the counterfactual growth rate in the absence of climate damages and g c

is the growth rate net of climate damages. Computed in this way, we assume that
future climate damages are not already priced into D, which is consistent with low
levels of overall awareness of climate risks in financial markets3.

Relative to the PV of assets without climate change, the climate VaR is

%VaR=
T∑
t=0

[
t∏

s=1

(
1+ ḡt

)
(1+ rt)

−

t∏
s=1

(
1+g c

t

)
(1+ rt)

]/
T∑
t=0

[
t∏

s=1

(
1+ ḡt

)
(1+ rt)

]
(1)

which is independent of the initial stock of assets. Therefore, equation (1) may also
apply to the stock of bonds, assuming debt and equity are perfect substitutes as
stores of value. As bonds typically pay fixed income, bond issuers are assumed to
factor in the growth effect of climate change through the interest promised when
entering into an agreement with the bondholder.

The discount rate rt for a globally diversified portfolio of assets is calculated by
making an initial estimate r0 from economic/market data, and subsequently
pegging {rt}Tt=1 to the GDP growth rate estimated by DICE. The initial estimate r0 is
4.07% (in real terms). This is based on the long-term historical relationships
between returns to world equities and bonds30, and global GDP growth31, weighted
by an estimate of their current share in global financial assets32. According to this
approach, a representative investor today holds bonds and equities in proportion
circa 1.3:1, and if the relationship that held between world bonds and world GDP
on average in the twentieth century, and world equities and world GDP in the same
period, holds today and in the future, then the discount rate is 0.36 percentage
points above the GDP growth rate, which DICE puts initially at 3.71%. For
sensitivity analysis (see Supplementary Information), we set r0=7%.

We peg {rt}Tt=1 to
{
ḡt
}T

t=1, which again implies that investors do not incorporate
climate-change forecasts in their asset valuations at present, nonetheless leading to
a conservative estimate of the climate VaR as g c

t < ḡt, for all t . In this sense, the
assumption is behavioural rather than being based on rational expectations. Note
that the initial year in the version of DICE that we use is 2005 (see below); we
however treat 2015 as year 0 for the purposes of estimating PV and VaR.

Exceptionally, the analysis behind Fig. 1 requires an assumption about the
initial cash flow D. We assume that the initial dividend yield is 2.76%, based on
data on long-term mean dividend yields and bond interest payments for a world
index comprising 19 countries30, weighted like rt in accordance with the proportion
of stocks and bonds in global financial assets32.

DICE model structure.We use an extended version of DICE2010 (ref. 33). Here
we confine ourselves to reporting changes to the basic model, which is
comprehensively described elsewhere21.

We extend the model to partition climate damages between direct damages to
the capital stock and damages to output, for given capital and labour inputs22,23:

DK
t = f

K
·Dt

DY
t =1−

(1−Dt)(
1−DK

t

)
where f K is the share of damages Dt falling on capital, estimated at 0.3 (ref. 34).

As is well known, damages in DICE are a function of global mean temperature
above the pre-industrial level T ,

Dt=
1

1+g (Tt)

and our specification of g (Tt) is

g (Tt)=α1Tt+α2T 2
t +(α̃3Tt)

7

where αi are coefficients used to calibrate the function on impacts studies and
α̃3 is a random parameter (see below). We set α1=0 and α2=0.0028 as per the
standard model. The element (α̃3Tt)

7 roughly speaking introduces the
possibility of catastrophic climate change5,25. It is worth noting that
although the overall convexity of g (Tt) is widely assumed, some of the most
recent evidence suggests it might be approximately linear, if not indeed
slightly concave6.

Random parameters and Monte Carlo simulation.We incorporate uncertainty
about TFP growth by parameterizing a probability distribution over the initial
growth rate of global TFP. Long-run data suggest that this uncertainty can be
represented by a normal distribution with a mean of 0.84% per year and a standard
deviation of 0.59% per year35.

We parameterize a probability distribution for the climate sensitivity S,
which is a key parameter driving transient climate response in DICE, based on the
consensus statements in the Intergovernmental Panel on Climate Change
(IPCC) Fifth Assessment Report36. As IPCC AR5 gives ranges, here we report our
specific assumptions: p(S<1)=0.025, p(S<1.5)=0.085, p(S<4.5)=0.915
and p(S<6)=0.95. Owing to the behaviour of DICE’s physical climate
model, we must place the additional restriction that S≥0.75. The best fit of these
data is a Pearson type-V distribution with a shape parameter value of
approximately 1.54 and a scale parameter value of approximately 0.9,
giving S̄=2.9.

The random parameter on damages α̃3 is intended to span the spectrum
of subjective beliefs of economists working on climate change about the level
of aggregate damage at T ≥4◦C (this spectrum is roughly
Nordhaus–Weitzman–Stern). We follow the principle of insufficient reason in
specifying a uniform distribution with a minimum of α3=0 (Nordhaus) and a
maximum of α3≈0.248 (which replicates the ‘high’ scenario in Stern’s recent
work22). However, alternative approaches to calibrating subjective uncertainty
about this parameter are arguably no less valid, so in sensitivity analysis we
investigate an alternative, normal distribution with a mean of 0.12 and a standard
deviation of 0.04. This means that at−3σ the damage function reduces to
Nordhaus’s standard version, whereas at+3σ it corresponds with Stern’s
high scenario.

We follow Nordhaus21 and others in using uncertainty about the backstop price
of abatement in DICE to create uncertainty about marginal abatement costs.
Updating Nordhaus21, we assume the initial cost of the backstop abatement
technology (note: not the cheapest abatement technology) is normally distributed
with a mean of approximately US$343 per tCO2 and a standard deviation of
approximately US$137.

For the Monte Carlo simulation, we take a Latin hypercube sample of the
probability space with 50,000 draws. Each input distribution is assumed
independent.

2 ◦Cmitigation scenario. This is derived from a cost-effective path to keep the
‘likely’ increase in the global mean temperature to not more than 2 ◦C at all times.
Likely is defined as per IPCC as 2/3 probability. Cost-effectiveness implies choosing
the vector of emissions control rates in DICE so as to minimize the discounted sum
of abatement costs, using the DICE standard social discount rate. The resulting
schedule of emissions control rates for the twenty-first century, starting in 2015 and
proceeding in increments of ten years, is 14.25%, 20%, 25.75%, 35.25%, 43.75%,
53.5%, 66.75%, 75%, 74.5% and 74.5%.

To compare the PV of global financial assets along this scenario with that
along BAU, we apply equation (1), but where, instead of comparing GDP growth
with and without climate damages, both along BAU, we have growth inclusive of
climate damages and abatement costs along the 2 ◦C mitigation scenario
and BAU.
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ABSTRACT 

This note reviews the empirical evidence available in the academic literature about the 

impact of climate-related risks on financial assets. It addresses three main questions: 

does climate change already affect financial asset returns? What is the potential impact 

of future climate-related costs on financial asset prices? Do financial markets adequately 

price in these costs? We find compelling evidence that climate-related events such as 

hurricanes and droughts – i.e. physical risks – already have a negative impact on both 

equity and debt instruments through lower payoffs and higher non-performing loans. 

We also find early evidence that transition costs impact on some financial assets more 

than others. Evidence on the effects of future climate costs on financial assets indicates 

that the financial risks associated with them are financially significant, even with 

conservative estimation methodologies. The magnitude of these risks critically depends 

on the extent to which investors currently price them in and on potential second-round 

effects. Several empirical studies point to a lack of awareness about future climate costs 

by investors, which support the concerns that financial markets currently do not 

adequately price in climate financial risks. 
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1 

1 INTRODUCTION 

“Climate-related risks are a source of financial risk”: the opening sentence of the first 

comprehensive report by the Central Banks and Supervisors Network for Greening the 

Financial System (NGFS 2019a) sounds like a wake-up call for the financial community. This 

warning, supported by more than 40 central banks and supervisors from all around the globe, 

must be taken seriously by financial investors. At the same time, central banks and financial 

supervisors frequently point to uncertainties around the magnitude and timing of climate 

change’s impacts on financial assets as a reason for inaction. As a result, changes to their 

practice has been largely incremental. 

Against this background, we review the empirical evidence on the link between climate risks 

and financial asset prices available to date in the academic literature. We address three main 

questions: is there empirical evidence that climate change already affects financial asset 

prices? What is the potential impact of future climate-related costs on financial assets? Do 

financial markets adequately price in these costs? We focus our survey on the impact of 

physical and transition costs on equity and debt instruments – i.e. on stocks, bonds, and loans, 

respectively. We also provide recommendations to bridge the knowledge gaps that we 

identify in our findings. 

We find compelling evidence that the physical costs associated with climate-related events 

such as hurricanes and droughts have already a negative impact on both equity and debt 

instruments. They significantly decrease the payoffs of equities and increase the proportion 

of non-performing loans. As the occurrence of such events is projected to rise substantially 

with climate change, their impact on financial assets will also grow. Since the transition to a 

low-carbon economy is yet to happen, empirical evidence of the impact of transition costs 

on financial assets are scarcer, but the examples available indicate that transition costs have 

already reduced equity returns and increased default probabilities for some firms. 

Turning to the effect of future physical and transition costs on financial assets, conservative 

stress tests for transition risks – i.e. without second round effects and without sudden 

revisions of investors’ expectations – estimate that portfolios constituted of both equity and 

debt instruments could lose up to 10% of their value within 5 years. This loss could 

materialize within one year if investors suddenly revise their expectations to reflect future 

transition costs. For scenarios in which no transition happens – i.e. scenarios with maximum 

physical costs – a sudden revision of investors’ expectations to account for future physical 

costs could generate losses up to 40% of the value of a diversified portfolio. In addition, 

second-round effects through investors’ cross-exposure to each other are likely to 

significantly amplify losses. 
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Our review of the literature highlights that the impact of climate change on future financial 

asset performance crucially depends on whether physical and transition costs are already 

reflected in current asset prices. Empirical evidence on this issue is limited, but we find 

compelling evidence that points to a lack of awareness about future climate costs by 

investors. This strongly suggests that financial prices do not currently adequately reflect 

future climate costs. This concurs with the conclusion by the NGFS that “there is a strong risk 

that climate-related financial risks are not fully reflected in asset valuations.” (NGFS 2019a, 

p. 4) 

Against this background, we urge both investors and financial regulators to systematically 

assess the climate risk exposure of their portfolio and of financial institutions that they 

supervise, respectively. For that, we believe that stress tests are the best way to evaluate 

shorter-term financial risks associated with climate change. The evidence presented in this 

study highlights that two key ingredients should be included in the design of such stress tests: 

first, the impact of swift revisions in investors’ expectations regarding future physical and 

transition costs, and second, the consequences of second-round effects on financial markets. 

Both features have a significant influence on the size of potential losses due to climate 

change, and both are likely to happen. Further research on the extent to which future climate 

costs are already priced in by financial markets, as well as a better understanding of second-

round effects on financial markets, is also critical in this context. 

This note is structured as follow: the next section describes the channels through which 

climate-related costs become financial costs and thus impact financial asset valuations. 

Section 3 reviews the evidence on the impact of climate-related costs on assets that have 

already been observed empirically. Section 4 collects the results from the available studies 

on the assessment of the impact of future physical and transitions costs on financial asset 

valuations. Section 5 presents the evidence on whether current financial markets adequately 

reflect future climate-related costs. Section 6 concludes and summarizes our 

recommendations. 

2 FROM CLIMATE-RELATED COSTS TO A CHANGE IN ASSET 

PRICES 

This section describes the channels by which climate-related costs impact on equity and debt 

instruments’ market value. In short, the market price of a financial asset is equal to the 

present value of its expected future payoffs plus a risk premium. Any change in expected 

payoffs due to climate change will then result in an adjustment of asset prices on financial 

markets. To better understand how climate change can impact market prices, we thus first 

outline how climate-related physical and transition costs influence equity and debt 

instruments’ payoffs. We then focus on how climate change can lead to a revision of market 
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participants’ expectations about these payoffs. Finally, we emphasize that the market price 

revaluations triggered by climate change are likely to be amplified by financial markets. 

2.1 CLIMATE-RELATED COSTS AND ASSET PAYOFFS 

The market price of a financial asset is largely determined by its future payoffs – i.e. its future 

income flows. For equity instruments, payoffs are equivalent to the cash flows generated by 

the firm issuing the equity. For debt instruments, they are the interests paid by the borrower, 

as well as the final repayment of the principal. If the issuer of equity falls into bankruptcy or 

a debt instrument defaults, the payoffs are, for equity instruments, the liquidation value of 

the assets owned by the issuer, and, for debt instruments, the value of the assets posted as 

collateral by the issuer. 

Climate-related costs are not different from any other financial costs: they decrease the 

income flow of the issuer of a financial instrument. This has two consequences: first, they 

impact the payoffs of equity instruments, by reducing the cash flows generated by the issuer. 

Second, they can impair the financial soundness of an issuer, which can trigger its default. 

Moreover, climate-related costs also impact payoffs by reducing the liquidation value of the 

assets owned by the issuer, in the case of equity instruments, and by decreasing the value of 

the assets posted as collateral by the issuer, in the case of debt instruments. 

In this section, we describe in more detail the concrete channels by which climate-related 

costs affect the income flow of equity and debt instrument’s issuers, as well as the value of 

the assets that they own. 

Physical costs 

Physical costs correspond to the economic and financial losses caused by climate-related 

hazards. Such hazards are divided into two categories: acute hazards and chronic hazards. 

Climate-related hazards are considered acute when they arise from extreme climate events 

such as droughts, floods and storms; they are chronic when they arise from progressive shifts 

in climate patterns such as increasing temperatures, sea-level rise and changes in 

precipitation. Costs from acute and chronic hazards comprise both their direct impacts (like 

e.g. damages to property or disruptions of firms’ operations) and their indirect impacts (like 

e.g. disruptions in the supply chain or lower aggregate demand from affected markets). 

Physical costs can negatively impact on asset payoffs through several channels such as 

reduced revenue from decreased production capacity (e.g. due to supply chain interruptions 

and worker absenteeism) and lower sales (e.g. due to demand shocks and transport 

difficulties), as well as increased operating costs (e.g. due to the need to source inputs from 

alternative more expensive supplies) and increased capital costs (e.g. due to damage to 

facilities). Physical costs can also reduce the value of issuers’ assets both through direct 
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damages e.g. to houses and factories during extreme weather events, but also through write-

offs of assets situated in high-risk locations. 

Transition costs 

Transition costs can be defined as the costs of economic dislocation and financial losses 

associated with the process of adjusting toward a low-carbon economy. Three sources of 

transition costs are usually considered as relevant for the financial sector: changes in policy 

(e.g. higher carbon prices or limits on carbon emissions), changes in technology (e.g. low-

carbon technologies becoming more competitive than carbon-intensive ones) and changes 

in market preferences (e.g. households switching toward greener consumption due to 

environmental concerns). All three types of change will require financial efforts for firms to 

adapt their business models to new economic conditions.  

At the same time, not all firms will be equally impacted; winners and losers will emerge both 

at the sectoral and at the firm level. The availability of low-carbon alternatives to a sector 

and the preparedness of individual firms within a sector are key factors to consider in that 

context. 

Transition costs can affect payoffs in several ways, including, for example, research and 

development expenditures in new and alternative technologies, costs to adopt and deploy 

new practices and processes, reduced demand for carbon-intensive products and services, 

as well as increased production costs due to changing input prices (e.g. for energy and water) 

and output requirements (e.g. for carbon emissions and waste treatment). 

The transition to a low-carbon economy can also significantly affect the value of equity and 

debt issuers’ assets: potential re-pricing of stranded fossil fuel assets is a case in point. 

Changes in real estate valuation due e.g. to stricter energy efficiency standards provide 

further illustration. 

2.2 EXPECTATIONS ABOUT CLIMATE-RELATED COSTS 

When the payoffs of an asset are not known in advance, the investors must rely on their 

forecasts to assess them and value financial assets. Expectations about future payoffs thus 

play a pivotal role in determining the market price of financial assets. Expected cash-flows, 

expected probabilities of default and expected values of liquidated assets and of collateral 

underpin all financial asset prices. On financial markets, asset price movements are thus 

highly dependent on the evolution of investors’ expectations. A revision of these 

expectations can lead to sharp price movements. The asset price drop that happens in these 

cases constitutes a financial risk for investors. 
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We can distinguish two types of expectations revisions: a change in expectations that result 

from exogeneous events or an endogenous change in expectations. We describe these two 

different types in the case of climate change in the subsections below. 

Climate-related shocks 

In efficient financial markets, asset prices reflect market participants’ forecasts of future 

cash-flows. Climate-related costs are part of that. The occurrence of an unexpected climate 

event might lead investors to update and revise their expectations about future climate costs 

and consequently about future payoffs. This translates into a change in asset price. 

Acute climate hazards, like for example a flood, a storm or a drought, are very likely to trigger 

such asset price movements. A firm using agricultural products in its production might, for 

example, see the costs of its inputs significantly increase after a drought. If this firm is not 

able to pass these higher costs to its customers through higher prices, such an event will 

lower its profits over several quarters. If the drought is unexpected, then financial analysts 

will revise down their cash flow forecasts of this firm, and the price of its equity will fall 

accordingly. 

The realization of transition risks can have similar effects. The introduction of policy 

measures such as a carbon tax by a country, for example, will impact the cash flows of local 

firms using carbon-intensive inputs. Financial analysts will integrate this fact in their payoffs 

forecasts when it becomes clear that the government will introduce such a policy and revalue 

assets accordingly. A technological breakthrough is another case of transition risk realization. 

New technologies to produce renewable energy, for example, can substantially modify the 

cost that firms within a sector are facing. As renewable energy becomes less costly, the firms 

using it as input will see their production costs decrease and their profits relatively increase 

compared to other firms. This will translate into a change in the relative asset prices between 

these firms. 

Physical and transition risks may also lead investors to revise their assessment of uncertainty 

around future payoffs. If this uncertainty increases, investors will ask for a larger risk 

premium. This also translates into a fall in asset prices. 

Note that a climate-related shock can potentially trigger a significant and rapid change in 

asset prices. Indeed, when such a shock happens, investors revise their expectation for the 

entire stream of future payoffs, incorporating all the costs that this firm will face in the future. 

Changes in costs that occur over relatively long periods of time are immediately integrated 

and cumulated in investors’ expectations. A sharp drop in asset prices triggered by physical 

or policy events could amount to a ‘climate Minsky moment’ a scenario in which markets 

may be destabilized by the magnitude of losses. (Carney 2018). 
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Endogenous expectation revisions 

Investors might also revise down their expectations about future payoffs endogenously. This 

is the case, e.g., when they switch to new forecasting models, revise the parameters of their 

current models or rely on newly available data to calibrate them. The introduction of new 

sources of costs into a forecasting model is a case in point for such endogenous expectation 

revision. This case is particularly relevant for climate-related costs. Indeed, for long these 

costs have been ignored or understated by financial analysts. Standard financial forecasting 

models were simply not integrating them. The situation is changing as the awareness of 

climate-related costs grows in the society. Models that integrate climate-related costs in 

asset valuation are now available (see, e.g., Monnin 2018) and an increasing number of 

investors are starting to use them. 

A key question for financial risk is whether climate-related risks are sufficiently reflected in 

current financial markets. If they are not, then there is a risk that investors would significantly 

revise down their payoffs expectations once they start integrating them in their forecast. This 

could trigger a large downward revaluation of asset prices and thus constitute are risk for the 

financial sector. 

2.3 AMPLIFICATION MECHANISMS ON FINANCIAL 
MARKETS 

As described in the previous section, a revision of investors’ expectation about climate-

related costs can potentially lead to a downfall in asset prices. Such downward movements 

can then be exacerbated by the structure of financial markets itself and the way they are 

currently functioning. There are several channels by which an asset price downfall can be 

amplified (herding behavior, speculation, financial frictions, etc.). In this section, we highlight 

two of these mechanisms that we consider as particularly relevant in the case of climate risks. 

Considering amplification mechanisms on financial markets is important because even if the 

direct financial risks posed by climate change might seem manageable at first sight, the asset 

price revaluations that they can trigger can be much larger than the initial shock. The last 

financial crisis illustrates this well: apparently small initial losses on the U.S. subprime 

mortgage market generated effects that threatened the stability of the global financial 

system. 

Network effects 

In the case of climate-related costs, an important distinction must be made between direct 

and indirect effects, both at the economic and the financial level. At the economic level, 

initial losses due to climate-related events in one sector percolate in the entire economy. 

Firms are not only affected by the consequences of climate change on their own activities 

but also by its effects on their supply chains or on their customers. Cahen-Fourot et al. (2019), 
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for example, show that a cap on fossil fuel production would strand assets in the mining 

sector, but also trigger waves of asset stranding in other sectors – like, e.g., electricity and 

gas, coke and refined petroleum products, basic metals and transportation – through the 

input-output structure of the economy. 

At the financial level, financial institutions that are exposed to climate risky assets will directly 

be impacted by a decrease in the price of these assets. But financial institutions that are not 

directly exposed to them might also suffer losses though their exposure to other financial 

institutions. Battiston et al. (2017), for example, show that the indirect exposure of European 

banks to climate-policy-relevant sectors is as large as their direct exposure. 

Balance sheet effects 

Losses in asset value can also translate into a larger decline in asset prices through balance 

sheet readjustments and fire-sales (see, e.g., Krishnamurthy 2010 or Shleifer and Vishny 

2011). In such a case, a decline in the price of some assets deteriorates the balance sheet of 

investors. This might cause them to liquidate other assets, which lowers their prices and 

deteriorates balance sheets further. Although we are not aware the phenomenon has been 

considered in the literature with regards to climate related risks, such a vicious cycle induced 

by sell-offs may amplify the losses due to a climate event and affect assets and institutions 

that were not initially exposed to the shock, as well as trigger financial losses that are, overall, 

far larger than the direct losses due to climate risks. 

3 CLIMATE-RELATED COSTS AND ASSET PRICES: THE 

EVIDENCE SO FAR  

While climate change is already influencing the economy, most of its financial effects are still 

ahead of us. Nonetheless, initial empirical evidence on its impact on asset prices is already 

starting to emerge. In this chapter, we point to economic effects, which are already 

empirically perceptible and relevant for asset prices: the impact of physical and transition 

costs on firms’ profits and stock returns; and on borrowers’ financial soundness. We focus 

our review on economy-wide studies. 

3.1 IMPACT ON FIRMS’ CASH FLOWS AND STOCK 
RETURNS 

There is empirical evidence that physical and transition costs already impact on firms’ cash 

flows, which is a key determinant of their stock performance. The next subsections present 

the empirical evidence of these impact on both cash flows and stock returns. 
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Physical costs 

Droughts are a case in point for the impact of climate-related physical costs that have already 

reduced firms’ cash flows. Hong et al. (2019) use a sample of weather data from 31 countries 

in the period 1985 to 2014 to show that dryer weather conditions are associated with lower 

profitability in the food industry. Higher temperatures are a further case in point. Addoum 

et al. (2019) and Hugon and Law (2019) show that, in the U.S., extremely hot summer 

temperatures negatively impact firms’ earnings in some specific sectors. Addoum et al. 

(2019) find that profits are affected mainly through the consumer demand and labor 

productivity channels, while the crop yield channel is not an important determinant. Both 

studies also highlight that certain sectors or individual firms are benefiting from extreme 

temperature conditions, like warm autumns. 

Kruttli et al. (2019) show that hurricanes, which are becoming more intense due to changes 

in the climate, impact stock prices in the US. They study the evolution of stock returns after 

hurricanes in the U.S. from 2002 to 2017 and find that within the 120 trading days after the 

landfall of hurricanes, the stock returns for firms operating in disaster regions are significantly 

lower than the returns of other firms. 

Bansal et al. (2016) and Balvers et al. (2017) finds that stock returns are impacted by 

temperature shocks. Both studies analyze the U.S. stock market over a very long sample – 62 

years for the former and 80 years for the latter. Bansal et al. (2016) also find similar evidence 

in a sample covering 39 countries over 42 years. 

Transition costs 

Evidence on transition costs are scarce as the transition to a low-carbon economy is yet to 

happen. Bernardini, et al. (2019) however provide some insights on how such a transition 

can impact firms’ profits within a specific sector. For that they study the case of European 

electric utilities and show that, following the progressive introduction of economic incentives 

by the European Union to stimulate investment in renewable energy – i.e. a policy shock – 

the profit of electric utilities companies using non-renewable energy as input fell sharply 

whereas it stayed constant for companies using renewable energy as input. The negative 

impact on profits is transmitted to shareholders via lower stock prices.  

3.2 IMPACT ON BORROWERS’ FINANCIAL SOUNDNESS 

Climate-related costs impose a burden on borrowers, which can lower their ability to service 

their debt. Some early evidence of this impact is already available for both physical and 

transition costs. 
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Physical costs 

Physical damages from extreme weather events associated with climate change already 

affect the ability of debtors to service their loans. Noth and Schüwer (2018) study the impact 

of weather-related events on the performance of about 6’000 banks in the U.S. over a period 

from 1994 to 2012. They find that banks operating in regions hit by weather-related disasters 

observe higher non-performing loans and higher foreclosure ratios than other banks during 

the two years following an event. This significantly increases the failure probabilities of these 

banks. This effect holds when controlling for bank characteristics that are typically associated 

with bank failures, such as bank equity ratios or non-performing assets ratios. Klomp (2014) 

finds similar results for a sample off banks in 160 countries over the period from 1997 to 

2010 that weather-related events impair the financial soundness of debtors. 

Transition costs 

Transition costs also impacts borrowers’ financial soundness. The measures taken by Chinese 

authorities to foster the transition to a low-carbon economy provide a useful case-study to 

highlight the impact of policy-triggered transition risks on debt instruments. Huang et al. 

(2019), for example, show that after the implementation of the Clean Air Action launched by 

the Chinese government in 2013, default rates of high-polluting firms rose by around 50%. In 

the same context, Cui et al. (2018) highlight that Chinese banks with a higher green credit 

ratio – i.e. banks that are less exposed to loans to polluting firms – experience lower non-

performing loans. 

4 FUTURE CLIMATE-RELATED COSTS AND ASSET PRICES : 

WHAT LIES IN FRONT OF US? 

In this chapter, we review the main estimates available in the literature for the future impact 

of physical and transition costs on financial assets. We first discuss the key initial choices that 

must be made in choosing the estimation methodology, we then look at the different 

methodological options available in each steps of the empirical estimations, and finally 

proceed to present and discuss the available estimates. 

4.1 KEY CHOICES FOR AN ESTIMATION METHODOLOGY 

Before estimating the future impact of physical and transition costs on financial asset prices, 

two important choices must be made: 1) which climate change scenarios will be used and 2) 

which type of scenarios do we want to analyze – long-term scenarios or stress-test scenarios? 
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Climate change scenarios 

A necessary step in the process of investigating the future financial impact of climate-related 

factors is to develop assumptions on what the future might look like. These visions of the 

future take the form of scenarios considered both possible and relevant. In the field we are 

reviewing, and following the tradition of Integrated Assessment Modelling, a critical variable 

defining scenarios is the long-term increase in global temperatures with respect to pre-

industrial averages. Common scenarios, especially in the studies focusing on transition risks, 

are the ones imposing a limit of 1.5°C and 2°C to temperature increase, as stated in the Paris 

Agreement (UNFCCC 2016). Other commonly used scenarios are those defined by policy 

commitments, such as the Nationally Defined Contributions (NDCs), and those which assume 

no transition. Figure 1 illustrates the four most common types of scenarios. 

 

FIGURE 1: COMMON CLIMATE TRANSITION SCENARIOS 

 

Source: Colas et al. (2019) 

In addition, considerations around the shape of the transition have become increasingly 

important, as a specific target (e.g. 2°C) could be obtained through both a gradual non-

disruptive transformation and an abrupt transition with systemic disruptions. The NGFS, for 

example, recommends using four different scenarios organized along two dimensions: first 

according to whether climate targets are met or not, and second whether the transition 

happens in an orderly manner or not (NGFS 2019b, p. 30). This classification generates four 

types of scenarios (see Figure 2): 1) an orderly transition that achieves climate goals, 2) a 

disorderly transition that achieves climate goals, 3) a disorderly transition that happens too 

late to meet the climate goals (“too little, too late”) and 4) a business-as-usual scenario with 

no disorderly transition but in which climate goals are not met (“hot house world”). 
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FIGURE 2: NGFS HIGH-LEVEL FRAMEWORK FOR SCENARIO ANALYSIS 

 

Source: NGFS (2019b) 

The UK Prudential Regulatory Authority (PRA) has defined three stress test scenarios for its 

insurance sector (PRA 2019): i) a rapid policy action set to hit in 2022, achieving the 2°C goal 

through a disorderly process (a ‘climate Minsky moment’); ii) an orderly transition, putting 

the global economy on a path to reach carbon neutrality by 2050 and keeping temperature 

increases well below 2°C and iii) the absence of all transition efforts. Some other studies also 

distinguish between an immediate and a delayed transition policy action, with the latter 

being more likely to create socioeconomic disruptions, as well as stronger climate impacts. 

HSBC (2019), for instance, distinguishes between a 2020 and a 2030 Policy Action scenario. 

The choice of the specific scenarios to investigate depends on the scope of the research. For 

instance, studies focusing on transition risks might only look at 2°C, possibly distinguishing 

between different policy implementation timing or different technological development 

trajectories. On the other hand, studies focusing on physical impacts might limit their analysis 

only to emission pathways creating an increase of temperatures of 4°C or beyond. Studies 

can also include both transition and physical risks, typically involving a trade-off between the 

two (see Figure 3). Mercer (2019) and UNEP FI (2019) are examples of studies combining 

both physical and transition risks. 
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FIGURE 3: CLIMATE SCENARIOS AND RISK IMPLICATIONS 

 

Source: Colas et al. (2019) 

Long-term studies vs. stress tests 

Studies looking at the financial impacts of climate-related risks can be distinguished 

depending on whether they focus on long-term scenarios or on shock scenarios. Studies 

adopting a long-term perspective typically analyze the effects of different emission pathways 

and related temperature targets on macro- or company-level variables, with the aim of 

understanding whether certain portfolios would offer higher or lower average returns over 

the next 15, 30 or 100 years. The development of carbon-reducing technologies and the 

introduction of carbon prices is typically gradual and the results of the imposed 

emission/temperature targets, as determined by some macroeconomic and climate models. 

This is the case, among others, in Mercer (2019), UNEP FI (2019), HSBC (2019) and Dietz et 

al. (2016).  

A different approach consists in imposing certain climate- or transition-related shocks to the 

system to see how financial variables would react in the short-term (usually one year, or 

slightly more). This approach is like the stress testing exercises routinely adopted to evaluate 

the solidity of financial institutions to tail risk (i.e. in the case of unlikely but plausible events), 

and consistent with the methodology typical of DSGE macroeconomic models. For instance, 

Vermeulen et al. (2018, 2019) look at four distinct transition scenarios characterized by a 

policy shock (the introduction of a global carbon price of USD 100 per ton of CO2 emissions) 

or a technology shock (a doubling of the share of renewable energy in the energy mix in the 

coming five years), as well as both or none of the measures. CISL (2015) studies instead how 

different forward-looking ‘market sentiments’, i.e. expectations of financial markets about 

future transition patterns, affect current macroeconomic and financial variables. In other 

cases, stress test exercises directly impose specific financial impacts. Battiston et al. (2017) 

propose two different approaches to their stress test: First, they assume a 100% devaluation 
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of the financial assets in the fossil industry (and successively in other sectors, namely utilities, 

energy-intensive industry, housing and transport) to estimate upper-bound losses to 

financial institutions. In a second test, they calculate shock distributions to the market share 

of three sub-sectors (fossil-fuels in the primary energy market, fossil-fuels in the secondary 

energy market, and renewables in the secondary energy market) and assume the changes in 

market shares to correspond to changes in equity before estimating banks’ losses. PRA (2019) 

details specific impacts on the financial assets of different industries, building on the 

available evidence in the literature.  

4.2 OPTIONS WITHIN THE DIFFERENT ESTIMATION 
STEPS 

Once the basic choices about the scenario to study and the type of studies – long-term vs. 

stress tests – have been made, several specific methodological options are possible to 

estimate physical and transition costs. We present these options below along the different 

steps that characterize most methodologies (see Monnin 2018). 

Economic impacts  

To evaluate the impact of different scenarios on financial assets, one first needs to 

understand what the impact of these scenarios would be on economic variables. Broadly 

speaking, two main approaches are possible at this stage.  

First, a ‘top-down’ approach can be adopted, which involves using a macroeconomic model 

to translate physical impacts and transition costs into effects on GDP, inflation and interest 

rates, prices of intermediate and consumption goods (energy commodities, in particular), 

changes in trade patterns, and others. These economic estimates are then translated into 

financial variables using additional modelling and valuation techniques (see next section). 

Mercer (2019), for instance, uses a macroeconometric model (E3ME) to obtain the sectoral 

GDP impacts of their scenarios of interest. HSBC (2019) uses an Integrated Assessment Model 

(TIAM-Grantham) to derive a set of trajectories for sectoral activity, emissions, energy use 

and carbon prices, which are then transformed into changes in company-level revenues and 

costs through additional bottom-up models. Vermeulen et al. (2018, 2019) use a 

macroeconometric model (NiGEM) to derive the impacts of their scenarios on both 

macroeconomic variables (GDP, inflation, etc.) and global stock prices. It then diversifies the 

impacts across industries by calculating their ‘transition vulnerability factors’ according to 

their level of embodied carbon emissions. 

Second, one can use instead a ‘bottom-up’ approach, focusing directly on the company or 

asset level. This is the case, for instance, of UNEP-FI (2019), which uses a number of models 

to evaluate both the physical and transition impacts on the costs and revenues of companies. 
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Trucost (2019) uses different carbon price scenarios to calculate the company-level carbon 

costs and the resulting ‘earnings at risk’, before aggregating the impacts at the portfolio level. 

The underlying methodological approaches and modelling structures are likely to have a 

strong impact on the results. Most models used assume some form of maximization, usually 

in the form of an intertemporal optimization of a welfare function, to determine carbon price 

trajectories and other macroeconomic variables, given certain emission scenarios. Others, 

most notably E3ME, are governed by macroeconometric functions and demand- rather than 

supply-driven, meaning that transition-related investments are treated as a positive increase 

in expenditure (and hence GDP) rather than a utility-reducing cost. 

As discussed in UNEP FI (2019), the scope of the analysis, can differ quite dramatically, 

including a combination of some or all of the following elements: i) direct impacts on 

firms/sectors (in the form of direct climate-induced disruption of operations or policies 

imposing additional carbon costs); ii) impacts on the supply chain (in the form of climate-

induced disruptions to suppliers or trade routes, or higher costs due to carbon prices being 

passed down the value chain from suppliers); iii) impacts on downstream markets (in the 

form of changes in the demand for specific goods and services); impacts on the 

macroeconomic environment (in the form of changes of aggregate economic activity, 

inflation or exchange rate).  

In addition to the potential transition costs, some studies include the positive benefits of 

technological opportunities arising from the development of new industries (HSBC, 2019; 

UNEP FI, 2019). It should be noted that all studies using companies’ portfolios take very 

specific circumstances as their base and so can only deliver partial analysis, unlikely to be 

representative of the reaction of the whole financial sector. 

Financial impacts 

The economic impacts, however calculated, need to be translated into financial impacts. 

Methodologies in this step strongly differ across studies.  

Dietz et al. (2016), for instance, after using the DICE model to calculate the GDP impacts of 

different mitigation scenarios, assume corporate earnings to be a constant share of GDP in 

the long-run, and the value of financial assets to be a function of discounted cash flows. In 

Mercer (2019), a heatmap of sensitivities of different industries and asset classes is 

developed, to transform sectoral GDP impacts into returns for different asset classes, 

disaggregated by industry. In UNEP FI (2019) the present value of the projected costs and 

opportunities from transition and physical impacts are compared to the current market 

valuation of the enterprise to calculate the Climate Value at Risk of the company. Vermeulen 

et al. (2018, 2019) assign sector-specific transition vulnerability factors and prospected 

equity returns to assets and securities in 56 industries (using NACE categories). The 

vulnerability factors are based on the amount of carbon emissions used to generate value-
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added. In addition, they employ their own survey data to estimate the corporate loan 

exposures of the largest Dutch banks. 

The approaches to evaluating the financial impact typically involve only first-round effects, 

i.e. they evaluate the sensitivity of firms/assets to certain scenario-induced economic trends, 

without considering further dynamic interactions. Battiston et al. (2017), on the other hand, 

introduce in their analysis a second-round effect, determined by exposure of financial 

institutions among themselves. These second-round effects are in some cases larger than the 

direct effects and might trigger wider systemic implications. 

Exposure 

Once the impact of future scenarios on different sectors/firms/assets has been evaluated, 

one can proceed to aggregate these impacts at a wider level, namely into portfolio holdings. 

In the literature, these can take the form of actual portfolios or just representative ones. 

UNEP FI (2019) considers two representative asset holdings: a ‘market portfolio’ composed 

of 30,000 companies equally weighted and a ‘top 1,200 companies portfolio’ closely 

mimicking the MSCI World Index. HSBC (2019) uses the MSCI ACWI (All Countries World 

Index). Mercer (2019) uses a representative growth portfolio made of a large variety of asset 

classes. In a similar fashion, CISL (2015) analyses four distinct portfolios representing the 

typical investment strategies of insurance companies (‘High Fixed Income’) and pension 

funds (‘Aggressive’, ‘Balanced’ and ‘Conservative’). These include sovereign bonds, corporate 

bonds, and equities from both developed and emerging economies, as well as other types of 

asset classes. 

Battiston et al. (2017) take instead the actual financial exposures of specific financial 

institutions. They analyze the exposure of about 80’000 disclosed equity holdings in the US 

and the EU to transition risk, using data from the Bureau van Dijk Orbis database. They also 

analyze bank loan portfolios, although a large part of their sectoral composition – and thus 

of the risk they are exposed to – must be inferred for a lack of data. Vermeulen et al. (2018, 

2019) construct a database of the majority of the equity and bond exposures of Dutch 

financial institutions (that includes banks, pension funds and insurance companies), making 

use of the national bank’s Securities Holdings Statistics. The method of looking at the 

financial exposure of investors to sectors/companies/assets likely to be affected by physical 

or transition risks has been adopted by several other works (see for instance: ESRB, 2016 and 

Giuzio et al., 2019), although without an explicit modulization of how the price or returns of 

financial assets would be affected. 

Measure of impact 

The results of the procedures discussed above can be presented in several forms, using 

several measures. Mercer (2019) uses the annualized value of the impact of climate scenarios 

on the portfolio return. UNEP FI (2019), as well as Dietz et al. (2016), Spedding et al. (2013), 
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and – for their distributed shocks model – Battiston et al. (2017) calculate a ‘Climate Value 

at Risk’ (VaR), which is the present value of the costs or profits caused by each considered 

scenario, divided by the current market value of the company. Climate-related costs and 

profits reflect physical risks, transition risks and technological opportunities. CISL (2015) 

report the 5-year performance of the portfolios they have analyzed, for three different 

scenarios. 

Another way of showcasing the scenario performance of asset classes or portfolios is to 

report the change in the net present value (NPV) of their profits (HSBC, 2019) or the change 

in stocks’ share prices (Ralite and Thomä, 2019) in comparison to those in a baseline scenario. 

Vermeulen et al. (2018, 2019) and Battiston et al. (2017), in the case of their upper-bound 

estimates, report the asset loss feared in the respective scenarios. The latter show banks’ 

equity losses as a percentage of total equity holdings. Vermeulen et al. (2018, 2019) report 

losses relative to the total assets of each sector (“total stressed assets”). In their study, they 

disaggregate reported equity changes into three sources of losses: changes in the risk-free 

interest rate; exposure to carbon intensive industries; and exposure to other industries. 

4.3 AVAILABLE ESTIMATES 

Table 1 summarizes the results of the main studies looking at the financial impact of climate-

related risks. The next subsections present our analysis of these results. 

Long-term studies 

The long-term studies currently available give a homogeneous picture of the impact of 

physical and transition risks on financial assets: the impact is marginal in the long-term and 

it does not differ substantially between transition scenarios. These results must however be 

interpreted with a pinch of salt: the models underlying them are usually long-term macro-

models in which financial markets play a smoothing role – i.e. investors do integrate climate 

change into their expectations and they constantly and progressively reallocate their asset 

portfolios. Such models do not give a good picture of what can happen on financial markets 

between now and the forecast horizon. For example, they are not conceived to simulate 

disorderly and abrupt transition paths, or to estimate the impact of the drastic changes in 

expectations, which could happen if investors currently do not integrate future climate costs, 

but suddenly revise their forecasts about them. 
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TABLE 1: ESTIMATIONS OF CLIMATE COSTS ON ASSET PRICES 

Authors 

(Model 

used) 

Type of Risk 

(Type of 

analysis) 

Portfolio/ 

Exposure 
Measure Asset class 

Time 

horizon 
Scenarios 

 2°C 3°C 4°C 

Mercer, 

2019 

(E3ME) 

Physical & 

Transition 

(Long-term) 

Represen-

tative growth 

portfolio 

Impact of 

scenario on 

portfolio 

return (year 

average) 

Total 

portfolio 

2030 0,11% -0,02% -0,07% 

2050 -0,05% -0,09% -0,14% 

2100 -0,07% -0,12% -0,18% 

Equity 

(developed) 

2100 

-0,10% 0,10% -0,20% 

Equity 

(emerging) 
-0,20% -0,30% -0,40% 

Growth 

bonds 
0,00% 0,00% -0,10% 

 1.5°C 2°C 3°C 

UNEP FI, 

2019 

(REMIND) 

Physical & 

Transition 

(Long-term) 

Market 

Portfolio of 

30,000 firms Company 

Climate VaR* 
Equity 15 years 

-4,56% -3,36% -1,84% 

1200 Top 

companies 
0,05% -0,46% -0,80% 

 2°C   

HSBC, 2019 

(TIAM-

Grantham) 

Transition 

(Long-term) 

MSCI ACWI 

(All countries 

World Index) 

Change in 

profits relative 

to BAU 

Equity 2050 -2%     

 2°C 2.5°C  

Dietz et al., 

2016 

(DICE) 

Physical & 

Transition 

(Long-term) 

Global stock 

of financial 

assets 

Climate VaR 

(mean) 

Equity and 

bonds 
2100 -1,18% -1,77%   

 2°C No action  

CISL. 2015 

(GEM) 

Transition 

(Stress test) 

High fixed 

income 

Portfolio 

performance 

Equity, 

bonds, and 

other assets 

5 years 

-3% -4%  

Conservative 9% -26%  

Balanced 17% -30%  

Aggressive 25% -45%  

*refers to the ratio between present-value climate-related costs/profits and current market value. 
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Table 1 continued: Estimations of climate costs on asset prices 

Authors 

(Model 

used) 

Type of Risk 

(Type of 

analysis) 

Portfolio/ 

Exposure 
Measure Asset class 

Time 

horizon 
Scenarios 

 
Policy 

shock 

Tech. 

Shock 

Double 

shock 

Confidence 

shock 

Vermeulen 

et al., 2018 

(NiGEM) 

Transition 

(Stress test) 

Dutch Banks 

Asset loss 
Equity, bonds, 

loans 
5 years 

-2,17% -1,14% -2,73% -1,67% 

…Insurers -8,12% -2,08% -10,83% -2,68% 

…pension 

funds 
-6,73% -2,99% -10,16% -6,65% 

 Fossil-Fuel 
Fossil-Fuel 

+ Utilities 

F-F + Util. + 

Energy-

intensive 

F-F + Util. + 

E-intens. + 

Housing 

+ Transp. 

Battiston et 

al., 2017 

(DebtRank) 

Transition 

(Stress test: 

reported 

sectors 100% 

devalued) 

Eurozone 

Banks 

Total 

relative 

equity loss 

equity, bonds, 

loans (first 

round) 

shock 

occurs in 

2017 

2.55% 3.79% 13.18% 15.09% 

Ditto (first and 

second 

round) 

6.08%* 9.75%* 27.91%* 30.24%* 

Transition 

(Stress test: 

with shock 

distributions) 

VaR (5%) 

 Fossil-Fuel 

Primary 

F-F Pri-

mary + F-F 

Secondary 

F-F P + 

Renew.  

Secondary 

Renew. 

Secondary 

Ditto  

(first round) 
0.26% 0.41% 0.19% 0.06% 

Ditto (first and 

second 

round) 

0.63% 0.96% 0.47% 0.13% 

*reported with standard deviations 

 

Stress test studies 

Stress tests give a better picture of the risks that financial asset could be facing due to climate 

change in the short to medium term. Stress test scenarios are relatively severe but still 

plausible. Vermeulen et al. (2018, 2019) provide, in our view, the most sophisticated 

estimation of transition risks currently available. They show that, in the case of a transition 

triggered by both a policy and a technological shock, the portfolios held by Dutch insurers 

and pension funds, which include equities, bonds and loan instruments, could lose up to 10% 

of their value within 5 years. Note that his estimation does not consider neither possible 

second-round effects on financial markets, nor sharp expectations revisions by investors. The 

Value-at-Risk methodologies used by Dietz et al. (2016) also allows us to get an idea of stress 

test scenarios. They estimate that, with one percent probability, equity and bond market 

together could lose 17% of their value within 80 years if no transition happens and about 9% 

if the transition materializes. 

The results presented above, together with others, can then be used to inform the definition 

of ‘climate stress tests’ that financial regulators can ask financial institutions to run in order 

to test their solidity to climate-related financial risks. One example is the new climate stress 
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that the UK Prudential Regulatory Authority has asked insurance companies to run. The 

details of the stress test are shown in Table 2, where the first scenario describes a rapid and 

disorderly policy action with shock parameters set to hit in 2022; the second scenario 

describes an orderly transition, putting the global economy on a path to reach carbon 

neutrality in 2050; and the third scenario assumes no transition and a temperature increase 

of 4°C by 2100. Although these scenarios include different timeframes, the stress tests 

considered by the PRA simulate an instantaneous shock on the investment and liabilities. 

Note that the assumptions that the PRA uses in these scenarios have been put together for 

exploratory purposes and to ensure that firms complete the return on the same basis. The 

PRA underlines that “this set of assumptions are developed for illustrative purposes only.” 

(PRA 2019, p. 32). The Bank of England will run a more comprehensive stress test of the UK 

financial system’s resilience to physical and transition risks in 2021 (see Bank of England 

2019). This stress test aims at developing scenarios that are consistent with a range of 

possible climate pathways and integrate these pathways with macroeconomics and financial 

models. This exercise should provide parameters that are both more analytically grounded 

and coherent. 

TABLE 2: PRA ILLUSTRATIVE STRESS TEST SCENARIOS 
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Expectation revision and second round effects 

The estimations mentioned above rely on the hypotheses that investors fully integrate 

climate change costs in their expectation for asset payoffs and that financial market will 

operate smoothly without amplifying asset price movements, through e.g. second round-

effects (see Section 2.4). However, some studies do try to estimate the impact of sharp 

expectation revisions and of second-round effects. Their results show a significant impact on 

financial asset prices. 

CISL (2015) estimate the impact of a sudden revision of investors’ expectations about the 

impact of climate change on asset payoffs. Such a situation could happen when investors do 

not fully integrate climate costs in their forecasts, which seems to be currently the case (see 

Section 5) and then suddenly correct this omission. CISL estimate that such a change in 

investors’ expectations could lead to a 40% correction within one year in the value of a 

balanced portfolio if investors integrate the consequences of a no transition scenario. This 

figure decreases to 10% in the case of a transition to a 2°C world. 

Second-round effects seem also to be an important amplifying factor of climate change 

impact on financial markets. Battiston et al. (2017) assess how an initial transition shock 

would propagate in the banking sector through the cross-exposures of banks with each other. 

They find that such second-round effects could more than double the impact of the initial 

shock. 

5 DO FINANCIAL MARKETS ADEQUATELY PRICE-IN 

CLIMATE RISKS? 

Climate-related physical and transition costs do already have an impact on financial asset 

prices – as documented in Chapter 3. To what extent future climate-related costs – – as 

outlined in Chapter 4 will result in corrections on financial markets depends on the degree 

to which they are already reflected in current asset prices. This chapter reviews the available 

empirical evidence that allows to answer this question. 

Empirically, there are several ways to shed light on the question of whether climate-related 

financial risks are already priced-in in current markets. First, in efficient markets, if investors 

already integrate future climate costs in their valuations, then current information about 

such costs cannot be used to forecast future asset returns. Second, if analysts correctly 

understand the impact of climate events on asset payoffs, they should revise their payoff 

forecasts once such an event materializes. Third, if investors price in climate risks, then assets 

exposed to these risks should trade with a higher risk premium. In the next subsections, we 

review the empirical evidence corroborating or contradicting these tests. 
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5.1 PREDICTABILITY OF ASSET RETURNS 

In efficient markets, investors use all available information to best forecast future payoffs 

and then price assets accordingly. In such a case, no information can be used to forecast asset 

returns. In other terms, if some piece of information is found to ex ante forecast the return 

of an asset, then it can be concluded that investors do not use this piece of information to 

forecast future asset payoffs – i.e. investors overlook this piece of information. In the context 

of climate-related costs, if information related to climate change is found to forecast future 

asset returns, that means that the impact of climate change on future payoffs is not 

adequately used by financial market participants – i.e. the impact of climate change is not 

priced-in. 

There is some evidence that climate-related information can be used to forecast future asset 

returns. Hong et al. (2019), for example, find that, for a sample of 31 countries from 1985 to 

2014, the trend in droughts in a country forecasts the stock returns for companies in the food 

industry. They conclude that “this return predictability is consistent with food stock prices 

underreacting to climate change risks.” Kumar et al. (2019) find that firms’ sensitivity to 

temperature anomalies forecast their stock returns. They measure firm’s sensitivity by the 

impact of temperature anomalies in one period on its stock return in the same period and 

show that this measure is then able to predict firm’s future stock returns. They conclude that 

“these findings are consistent with stock markets underreacting to firms’ climate sensitivity.” 

5.2 FORECAST REVISIONS 

Some climate-related events influence firms’ profits (see Section 3.1). For example, extreme 

temperatures negatively impact firms’ earnings in some specific sectors (Addoum et al., 2019, 

and Hugon and Law, 2019). If this impact is well understood by analysts, then the occurrence 

of such an event will lead them to revise down their earnings expectations for the firms that 

have been affected. 

Addoum et al. (2019) test this hypothesis by looking at changes in analysts’ forecasts for 

earnings before and after the occurrence of 8’584 extreme temperature events in the U.S. 

These events have been previously identified as relevant for firms’ earnings. They find no 

evidence that analysts adjust their earnings forecasts after the firms they cover have 

experienced an extreme temperature event, which suggest that analysts do not fully 

integrate the impact of climate change in their expectations. 

Griffin et al. (2015) provide a counterexample of analysts’ forecasts revision after receiving 

news on transition risks. For that, they analyse the stock market reaction after the publication 

of a 2009 paper in Nature, which concluded that only a fraction of the world's existing oil, 

gas, and coal reserves could be emitted if global warming by 2050 were not to exceed 2 °C 

above pre-industrial levels. Griffin et al. find that this article prompted an average and 
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permanent stock price drop of 1.5% to 2% for the largest U.S. oil and gas firms within three 

trading days. This result hints that investors revised their payoff forecast downward after 

becoming aware of possible stranded assets in the oil and gas sector. The small magnitude 

of the reaction contrasts however with the predictions of some analysts and commentators 

of a substantial decline in the shareholder value of fossil fuel companies from a carbon 

bubble.  

5.3 CLIMATE RISK PREMIUM 

Basic financial theory states that if an asset is riskier than another, then investors must be 

compensated with a premium to hold it. This also applies to climate risks: if an asset is 

exposed to higher physical and transition risks than others, then it should deliver higher 

returns to investors to compensate for their risk-taking. We survey evidence of such a risk 

premium in equities and bank loans. 

Equities 

Görgen et al. (2019) and Bernardini et al. (2019) find that stocks that are more exposed to 

transition risk deliver lower returns than others, which is inconsistent with a risk premium. 

Görgen et al. (2019) use a sample of about 1’600 globally listed firms over a period ranging 

from 2010 to 2017 and find that firms, which are more exposed to their measure of transition 

risk, underperform relative to other firms. Bernardini et al. (2019) focus on European 

electricity utilities. Their data show that firms, which were hit by a transition shock in the 

second part of their sample period (2013-2017), did not display higher returns on equity 

before the shock (2008-2012), which is a sign that the transition shock was not priced in. 

Bank loans 

If a firm is exposed to higher climate risks than others, then banks should also reflect this fact 

by charging a higher spread on loans to it. Delis et al. (2019) test this hypothesis in the context 

of stranded asset risk. For that, they compare the loan rate charged by banks to fossil fuel 

firms – along their climate policy exposure – to non-fossil fuel firms. They find that before 

2015 banks did not price climate policy exposure of fossil fuel firms. After 2015, however, 

the risk starts to be priced, especially for firms holding more fossil fuel reserves. However, 

the economic significance of this risk premium is rather small and is very unlikely to match 

the potential losses from stranded assets. 

Huang et al. (2019) find similar results: they show that after the implementation of the Clean 

Air Action by the Chinese authorities – i.e. after the materialization of a policy shock – 

Chinese banks increased the loan spread by 5.5% to high-polluting firms. Even if this increase 

corresponds to a higher risk premium, its size does not match the large increase in default 

rate observed for polluting firms after the policy shock. In short, both studies indicate that 

banks have started pricing climate-related risks, but not sufficiently. 
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6 CONCLUSIONS AND RECOMMENDATIONS  

Our review of the literature highlights evidence that climate-related events do already have 

an impact on the performance of financial assets. Hurricanes and droughts, for example, 

have a negative impact on both equity and debt instruments – leading in some cases to a 

significant decrease in the payoffs of equities and increase in the proportion of non-

performing loans. As the occurrence of such events is projected to rise substantially with 

climate change, their impacts on financial assets will also grow. 

Forecasting the impact of future physical and transition costs comprises very long-term 

projections as well as shorter-term assessments. We believe that shorter-term stress tests 

are the best way to capture the current risks to which investors are exposed. The losses 

estimated with the stress tests that are available in the literature are economically significant, 

even with conservative methodologies. We found that expectation revisions and second 

round effects are likely to substantially increase initial financial losses due to climate-related 

events. 

Whether investors currently adequately price in future physical and transition costs is crucial. 

The answer to this question conditions the size of potential financial losses. Empirical 

evidence is limited but we find convincing evidence that points to a lack of awareness about 

future climate costs by investors and that financial prices do not currently adequately reflect 

them. This concurs with the conclusion by the NGFS that “there is a strong risk that climate-

related financial risks are not fully reflected in asset valuations.” (NGFS 2019a, p. 4) 

Against this background, we recommend investors to systematically assess the climate risks 

in their portfolios with a particular emphasis on the use of stress tests. In the conception of 

the stress test scenarios, two key dimensions should be included: first, the impact of a swift 

revision of market participants’ expectations about future physical and transition risks should 

be assessed, as there are strong signals that financial markets currently do not adequately 

price in these costs. Furthermore, second-round financial effects should be considered in the 

models, as they have the potential to significantly amplify initial losses. Financial investors 

should also be supported by regulatory steps, such as obligatory disclosure by issuers of 

financial instruments of the climate financial risks, to which their underlying business is 

exposed. Disclosure initiatives such as the TCFD go in the right direction for that but they 

might fall short if they are not very widely adopted by issuers and if investors do not use the 

information that they provide. 

Climate financial risk is also a challenge for central banks and financial regulators in charge 

of micro- and macro-supervisions (Campiglio et al. 2018). Here again, we urge financial 

authorities to use climate stress tests to assess the exposure of single financial institutions 

and of the financial system as a whole. When defining standard methodologies for stress 

tests to be performed by supervised institutions, special attention should be given to the 
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development of relevant scenarios, such as those recently proposed by the NGFS (2019a). As 

for investors, we again emphasize the importance to integrate potential swift revisions of 

market expectations and second-round effects in the design of stress tests. When the 

exposure of financial institutions and of the financial system to climate risks is found to be 

significant, options are available to regulators to reduce it, like, e.g., systemic capital buffers 

(see, e.g., D’Orazio et al. 2019). 

As emphasized several times in this note, whether climate risks are adequately reflected in 

current financial asset prices is a fundamental question. The size of future potential losses 

crucially depends on the answer to this question. Current academic literature offers 

anecdotal evidence on this matter and outlines pathways for further research on this this 

issue. 

Finally, available empirical evidence on second round effects points to a substantial 

amplification of initial losses due to climate-related events, highlighting the need to include 

them into the design of stress tests. The methodologies to do so are in their infancy. 

Developing them further is critical. 
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1. Introduction

What we have known simply as “climate change” for the past thirty five years is now a

global crisis. According to World Economic Forum (2021), climate action failure, extreme

weather conditions, and environmental damage arising from human activities are among

the most likely risks that the world will be exposed to over the next decade. Regulators

have paid close attention to climate change and its implications for financial stability.1

Central banks and financial regulators have started to design scenarios for climate stress

tests to gauge how vulnerable the financial system is to climate change. Despite the sense

of urgency and policy significance of this topic, considerable gaps remain in the academic

research. A major challenge facing both climate finance researchers and practitioners

is the shortage of methodologies that facilitate robust measurement of climate risk and

promote a successful assessment of the impact of climate change on financial stability

(Bank for International Settlements, 2021; Battiston et al., 2021). The aim of this paper

is to make progress in this matter through developing a method to calibrate climate risk

and to examine its impact on financial stability.

Prior studies document the effects of climate risks on both financial and nonfinancial

firms. Firms that are more exposed to extremely high temperatures suffer lower revenues

and operating income (Pankratz et al., 2019). Climate risk is negatively associated with

earnings of publicly listed firms and positively associated with their earnings and cash

flows volatility, which further influences firm capital structure: firms in countries with

higher climate risk tend to hold more long-term debt and cash while paying lower cash

1For example, the Financial Stability Board’s (FSB) Task Force on Climate-related Financial Dis-
closures (TCFD) released its recommendations on climate risk management and disclosure for financial
institutions in June 2017 with the objective of developing voluntary disclosure on climate risk. In Novem-
ber 2017, the Economic and Monetary Affairs Committee (EMAC) of the European Parliament issued
a proposal that would amend the European Union’s Capital Requirements Regulation to make climate
risk management and disclosures mandatory. In July 2021, the FSB drew up a roadmap for addressing
climate-related financial risks, which highlights four key interconnected blocks namely disclosures, data,
vulnerabilities analysis, and regulatory practices and tools.
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dividends (Huang et al., 2017). Battiston et al. (2017) examine how climate policies

affect revenues and costs for different sectors in the real economy with indirect effects

on financial sectors. They find that the combined exposure to climate policy-relevant

sectors is large and heterogeneous, and financial sectors are directly exposed to climate

policy-relevant sectors. A further strand of literature focuses on banks’ reaction to climate

change, primarily reflected in the price discrimination embedded in loan pricing. Delis

et al. (2019) show that banks started pricing climate policy risk by charging marginally

higher loan rates to fossil fuel firms after 2015. Javadi and Masum (2021) document that

firms in locations with higher exposure to climate risk pay significantly higher spreads

on their bank loans. Similarly, Jiang et al. (2020) find that lender banks impose a higher

cost of credit for fossil fuel firms that are subject to stricter climate policies and for

firms exposed to greater sea level rise (SLR) risk. The awareness of the SLR risk is also

reflected in prices in residential mortgage markets (Nguyen et al., 2022).

Climate risk would appear to meet the minimal definition of a systemic risk proposed

by Benoit et al. (2017), as the risk that many market participants are simultaneously

affected by severe losses, which then spread through the system. Significant variation in

levels of systemic risk has been determined conditional on the institution’s noninterest

income (Brunnermeier et al., 2020), corporate governance (Anginer et al., 2018), juris-

dication (Bostandzic and Weiss, 2018), size (Laeven et al., 2016; Pais and Stork, 2013),

competition (Anginer et al., 2014), network interdependence (Hautsch et al., 2015), cap-

ital (Gauthier et al., 2012) and the provision of government aid (Berger et al., 2020).

Despite the previously described catalyst for climate risk to contribute to bank systemic

risk; however, only limited empirical support has been furnished.

Two main channels of risk transmission from climate change to financial stability have

been identified: physical risks and transition risks. Physical climate risks arise when cli-

mate change causes damage to physical assets and disruption to operations of firms,
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generating increased credit risk for lender banks, increasing claims for insurance compa-

nies, and impairing the financial position of governments. Transition climate risks relate

to unanticipated and sudden adjustments of asset prices (both positive and negative)

and changes in default rates for entire asset classes due to shifts in policies, technology,

and sentiment in the process of adjustment towards a low-carbon economy (Financial

Stability Board, 2020). In this paper, we focus on physical climate risks.

Physical climate risks adversely affect banks in two primary ways. First, physical

climate risks can directly cause damage to physical assets and accelerate depreciation of

capital assets, for example, through its connection with extreme weather events such as

flood, storm, or wildfire. Such impact can be offset as insurance generally covers losses

due to unexpected catastrophic events. Second, a more relevant impact comes from the

fact that physical climate risks can change (usually reduce) the outputs achievable with

a given level of inputs, which amounts to a change in the return on capital assets. Banks’

credit risk increases and loan quality declines when borrower firms’ ability to repay loans

is weakened by climate risk events. Dietz et al. (2016) document that the estimate of

the impact of climate change on asset value (i.e., climate value at risk or climate VaR)

is economically significant and mostly distributed in the tail. More importantly, it is

difficult to model and to hedge climate risks given the unexpected nature and the long

horizon over which such risks may materialize (Financial Stability Board, 2020).

We first create a bank-level climate risk measure using the Billion-Dollar Weather and

Climate Disasters data from National Oceanic and Atmospheric Administration (NOAA)

and Dealscan syndicated lending data. We then employ this measure to examine the ef-

fect of banks’ climate risk exposure on their tail risks and systemic risk contribution based

on a sample of 7,830 lender-borrower-year observations comprised of 31 lender banks and

1,778 borrower firms for the period of 1999–2017. Our identification strategy consists of

three key elements: (1) lender bank and borrower firm fixed effects to control for latent
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constant characteristics of banks and borrowers as well as loan demand around loan origi-

nation, allowing variation in the bank-level climate risk measure to explain the remaining

variation; (2) controlling of book value of loans (i.e., loan ratios) to filter out the incre-

mental effect from syndicated lending; and (3) an instrumental variables approach that

avails an exogenous source of variation in the bank-level climate risk. We find that banks’

climate risk exposure acquired through the lending channel increases their tail risks and

systemic risk contribution. This effect is both statistically and economically significant:

An increase by one standard deviation in the bank-level climate risk measure leads to an

increase of 3.1% in tail risk at 5%, 8.0% in tail risk at 1%, 8.7% in the marginal expected

shortfall, 2.5% in the long-run marginal expected shortfall, 0.4% in systemic risk contri-

bution at 5%, and 0.9% in systemic risk contribution at 1%. We perform additional tests

and find that the results are robust to several alternative climate risk measures includ-

ing an adjusted climate risk measure accounting for borrowers’ vulnerability to climate

change, a residual climate risk measure that is orthogonal to common bank risk factors,

and an alternative climate risk measure computed following the Germanwatch method.

Our results also hold with interaction tests that decompose the climate risk measure, with

an alternative method to estimate systemic risk, with weighted least squares estimators,

and with alternative methods to compute standard errors.

This paper makes several contributions. First, we contribute to the literature on

systemic risk by documenting borrower firms’ exposure to climate risk as a source for

lender banks’ systemic risk contribution. Second, we contribute to the literature on

climate risk by proposing a climate risk measure that quantifies the extent to which

banks have suffered direct losses due to extreme weather events such as storms, floods,

heat waves, and wildfire. In contrast to the other climate risk measures that focus

on, for example, heat exposure (Pankratz et al., 2019), or the sea level rise (Nguyen

et al., 2022; Jiang et al., 2020; Bernstein et al., 2019), our measure captures the direct
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impact of economic losses due to climate change. We believe that this set of measures

can create an avenue for future research that seeks to examine the impact of climate

change on different aspects of social and economic life. Lastly, this paper is relevant to

regulators’ ongoing efforts in measuring climate risks and understanding their implications

for financial stability, which also provide validation on central banks’ involvement in

safeguarding monetary and financial stability against climate change.

The remainder of the paper is organized as follows. Section 2 describes the data

and approach employed to measure climate risk. Section 3 presents the empirical de-

sign. Section 4 presents baseline results. Section 5 reports robustness results. Section 6

concludes.

2. Measuring Climate Risk

2.1. Data

We use the Billion-Dollar Weather and Climate Disasters Data from the National Cen-

ters for Environmental Information (NCEI) database maintained by NOAA to measure

the state-level climate risk. We employ extreme weather event data as physical climate

risk is mostly driven by severe weather events (Li et al., 2020). The NCEI database

reports weather and climate disasters where overall losses equaled or exceeded $1 billion.

Climate risk events are classified into seven disaster categories: drought, flooding, freeze,

severe storm, tropical cyclone, wild fire, and winter storm. For the 1980–2020 reporting

cycle, it reports 290 events with total human deaths of 14,492 and total losses exceeding

$1.98 trillion2, corresponding to an average of seven events and 353 deaths per year and

a loss of $6.8 billion per event (NOAA, 2020).

We map the raw climate risk loss data to provide an overview of the variation in

climate risk across the states. Figure 1 displays the cumulative losses due to climate risk

2CPI-adjusted to 2020.
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events during the period of 1980–2020. Figure 2 maps the total number of climate risk

events for the same period. Georgia, Mississippi, North Carolina, and Texas are among

the high-risk states in terms of both loss severity and frequency over the years.

[Figure 1 and 2 about here.]

We collect data on syndicated loans from the Dealscan database maintained by the

Loan Pricing Corporation (LPC). Dealscan provides comprehensive information on syn-

dicated loans at origination, including loan amount, maturity, pricing, and identity of

lenders and borrowers. A syndicated loan is facilitated by a syndicate of lenders jointly

providing funding to a single borrower. The unit of observation in the Dealscan database

is a facility (or tranche). A typical syndicated loan deal (or package) consists of multiple

facilities initiated at the same time. A deal is arranged by sole or a few lead lenders who

solicit the syndicated members and define the lending arrangement. We use the largest

facility to represent the deal3 and retain lead arrangers for each deal. Lead arrangers

hold a larger loan share for signaling purposes (Sufi, 2007), make the loan pricing deci-

sions, and are liable to reputational costs if they misprice loans. Following Bharath et al.

(2011), we designate a bank as a lead arranger if the bank is the sole lender or the lender

role is reported as admin agent, agent, arranger, or lead bank in Dealscan.

We restrict our analysis to credit lines and term loans made by US banks to domestic

nonfinancial firms. We focus on credit lines and term loans because they are the dominant

types of loans made by banks to nonfinancial firms (Colla et al., 2013; Jiang et al., 2010;

Sufi, 2009). Following Chu et al. (2019), we define a lending observation as a credit line or

term loan if it falls within one of the following categories: 364–day facility, revolver/line

< 1 year, revolver/line ⩾ 1 year, revolver/term loan, term loan, and term loan A.

3Carey et al. (1998) and Ivashina (2009) demonstrate that this selection choice does not significantly
affect the distribution of loans.
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2.2. Measurement

Our approach to climate risk measurement is largely informed by the methodolog-

ical framework developed by the Bank for International Settlements (2021), which in-

volves scoring climate risk on the basis of accounting for portfolio and sectoral exposures.

The measurement of climate risk comprises two major steps: We first create a state-

level climate risk index (CRI State), and then compute bank-level climate risk exposure

(CRI Bank) by weighting bank lending to a state by the climate risk index of the bor-

rower’s state (CRI State).

The state-level climate risk index (CRI State) quantifies the extent to which states

have suffered direct loss associated with extreme weather events such as storms, floods,

and heat waves. CRI State is indicative of the severity of losses that a state suffers due

to climate change, and is defined as the natural logarithm of the first principal component

of six key climate risk indicators: (a) number of deaths, (b) number of deaths per 100,000

inhabitants, (c) sum of losses in USD at purchasing power parity (PPP), (d) losses per

unit of Gross Domestic Product (GDP), (e) number of events, and (f) loss per event. A

higher score for CRI State corresponds to greater climate risk for state j in year t:

CRI Statej,t = pca(aj,t, bj,t, cj,t, dj,t, ej,t, fj,t). (1)

The bank-level climate risk is the sum of a bank’s lending share to an individual state

weighted by the climate risk of the borrower’s state, which can be expressed as follows:

CRI Banki,t =
∑ Li,j,t

TLi,t

CRI Statej,t, (2)

where Li,j,t is the total outstanding loans made by bank i to borrowers in state j in year

t. TLi,t is the total outstanding loans of bank i in year t.
Li,j,t

TLi,t
measures a bank’s lending

share to a given state in a specific year. CRI Statej,t is the climate risk index for state
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j in year t as defined in Equation (1). For example, JP Morgan’s lending share to Texas

and Florida is 17% and 6% out of its total syndicated lending in 2016, respectively.

3. Empirical Design

3.1. Methodology

To examine the impact of bank-level climate risk on financial stability, we exploit

the economic link between a lender bank and its borrower firms, and analyze how the

exposure of a bank’s borrowers to climate risk affects the bank’s tail and systemic risk

contribution. We specify our baseline model as follows:

Riski,t = β0 + β1CRI Banki,t−1 +
26∑
j=2

βjControli,t−1 + FE + ϵi,t, (3)

where Riski,t is a set of variables of bank i at time t that is one of the following risk mea-

sures: TAIL5, TAIL1, Marginal Expected Shortfall (MES), Long-run Marginal Expected

Shortfall (LRMES), ∆CoVaR5 and ∆CoVaR1. In detail, TAIL5 (TAIL1) is computed as

expected shortfall (ES) at the 5% (1%) level:

ESi
t = E[Ri

t|Ri
t ⩽ Ri

t(α)], (4)

where Ri
t denotes the daily stock return of bank i at time t. Ri

t(α) is the α quantile of

bank returns. Setting α at 5% or 1%, ES measures the average return for a bank’s stock

during the 5% (1%) worst return days for the bank in a year.

Following Acharya et al. (2012), we compute MES as follows:

MESi
t = E[Ri

t|Rm
t ⩽ qα], (5)

where Ri
t is the same as previously defined; Rm

t represents the daily financial sector
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market return at time t; and qα is the α quantile of market returns. Setting α=5%, MES

measures the average bank equity return during the 5% worst return days for the banking

industry in a year. MES quantifies the extent to which an individual bank’s stock returns

are low when market returns are low.

LRMES is the long-run marginal expected shortfall (Acharya et al., 2012) when the

financial industry returns are below –2%, calculated as follows:

LRMESi
t = 1− exp(−18× (E[Ri

t|Rm
t < −2%])). (6)

We follow Adrian and Brunnermeier (2016) to estimate the time-varying ∆CoV aR for

each bank at the 5% and 1% levels. Our estimation is based on quantile regressions using

weekly data calculated using CRSP daily stock files for all financial institutions with

two-digit Standard Industrial Classification (SIC) code between 60 and 67 inclusive.4

We remove daily observations with missing or negative prices and retain banks with

nonmissing stock return data on their ordinary common shares for a minimum of 260

weeks. We then merge the weekly stock data with quarterly balance sheet data from the

CRSP/Compustat Merged dataset5 and remove banks with book-to-market and leverage

ratios that are less than zero or greater than 100.

X i
t = αi + γiMt−1 + ϵit, (7)

Xsystem
t = αsystem|i + βsystem|iX i

t + γsystem|iMt−1 + ϵ
system|i
t , (8)

where X i
t is the daily return on the market-valued total assets of bank i at time t; Xsystem

t

is the daily return of the financial system, calculated as the market-value weighted average

4We adjust the changes in SIC code due to conversions of several large institutions into bank holding
companies.

5Both equity return and balance sheet data are adjusted for mergers and acquisitions.
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change in asset values for financial institutions. Mt−1 is a set of state variables that

include the change in the three-month Treasury bill rate, the change in the slope of the

yield curve (i.e., the spread between the composite long-term bond yield and three-month

Treasury bill rate), a short-term TED spread (i.e., the difference between the three-month

LIBOR rate and the three-month Treasury bill rate), the change in credit spread between

Moody’s seasoned BAA corporate bond yield and the ten-year Treasury rate, the weekly

market return computed from the S&P 500 index, the weekly real estate sector return in

excess of the financial sector return, and equity volatility calculated as the 22–day rolling

standard deviation of the daily CRSP stock market return.

From the estimation of equations (5) and (6) we obtain:

V aRi
t(q) = α̂i

q + γ̂i
qMt−1, (9)

CoV aRi
t(q) = α̂system|i

q + β̂system|i
q V aRi

t(q) + γ̂system|i
q Mt−1, (10)

where α̂i
q, γ̂i

q, β̂
system|i
q and γ̂

system|i
q are coefficients obtained from quantile regressions

at the 1% and 5% confidence levels. ∆CoV aRi
t(q), which measures the marginal con-

tribution of bank i to the risk of the system at time t, is computed as the difference

between CoV aRi
t(q) conditional on the distress of the institution (i.e., q=5% or 1%) and

CoV aRi
t(50%) (i.e., the normal state of the institution):

∆CoV aRi
t(q) = CoV aRi

t(q)− CoV aRi
t(50%). (11)

We obtain weekly ∆CoV aRi
t(q) from the quantile regressions, and convert it to an

annual frequency by first taking the mean of ∆CoV aRi
t(q) and then applying a multiplier

of 52 for each bank-year. We multiply TAIL5, TAIL1, MES, LRMES, and ∆CoV aRi
t(q)

by −1 such that higher values correspond to greater risk.
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CRI Bank is defined in Section 2.2. Our point of focus is the coefficient β1. We

control for a list of bank characteristics that are found to be relevant in explaining bank

systemic risk (Brunnermeier et al., 2020; Anginer et al., 2018; Laeven et al., 2016; Gau-

thier et al., 2012). We include bank size (SIZE Bank), equity ratio (EQRAT Bank),

market-to-book ratio (MTB Bank), loans-to-assets ratio (LTA Bank), loan loss provi-

sioning (LLP Bank), deposit ratio (DEPO Bank), noninterest income ratio (NII Bank),

return on assets (ROA Bank), operating expense management (OEM Bank), and change

in cost-to-income ratio (∆CIR Bank). Notably, since our CRI Bank has an element of

banking lending share, controlling for the book value of loans (LTA) thus allows us to

gauge the incremental effect of syndicated lending in addition to bank loan books, on

banks’ tail risks, and systemic risk contribution.

We also control for a range of borrower firm characteristics that are relevant in

explaining lending decisions and loan quality and to control for demand for credit,

which include firm size (SIZE Borrower), market-to-book ratio (MTB Borrower), cash

holding ratio (CASH Borrower), current ratio (CURRENT Borrower), interest coverage

(COVER Borrower), debt ratio (DEBT Borrower), dividend payout (DPO Borrower),

profitability (EBITDA Borrower), intangible assets ratio (INTAN Borrower), fixed as-

sets ratio (PPE Borrower), and annual growth in sales revenue (∆SALES Borrower). We

control for GDP and GDP growth (∆GDP) for both lender and borrower states. Variable

definitions are detailed in Appendix A. We also include year fixed effects in all regres-

sions to account for economy-wide shocks on bank risk. We include bank fixed effects

to control for unobservable time-invariant bank characteristics, and borrower firm fixed

effects to control for latent constant characteristics of each borrowers and loan demand

around loan origination. With this setup in place, variation in CRI Bank explains the

remaining variation. All continuous independent variables are winsorized at the 1st and

99th percentiles of their empirical distribution. Standard errors are adjusted for clustering
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at the bank-borrower lending relationship level.

3.2. Sample and Descriptive Statistics

We match borrower firms in the Dealscan database with annual financial statement

information from Compustat using the linking table provided by Chava and Roberts

(2008). We use data from the financial year prior to the year of loan origination to

ensure that we use accounting information that is publicly available at the time of loan

origination. Using the linking table provided by Schwert (2018), we merge lender banks

active in Dealscan with financial statement data from Compustat. We exclude borrower

firms that are located within the same state as the lender bank because our primary focus

is the cross-state lending as a transmission channel for climate risk exposure, and inclusion

of within-state lending would make it difficult to disentangle the impact of climate change

on bank risks. We then aggregate all data at lender banks’ and borrower firms’ parent

level to construct the “lender-borrower” sample. This sample contains information on 31

lender banks and 1,778 borrower firms between 1999 and 2017, forming a total of 7,830

lender-borrower-year observations. Table 1 reports sample composition. Panel A reports

sample composition by year. Panel B reports sample composition by lender bank state.

Panel C reports sample composition by borrower firm state.

[Table 1 about here.]

Table 2 presents descriptive statistics for all variables used in our analysis. For

our key dependent variables, the average bank has tail risk at the 5% (−TAIL5) of

3.126%, tail risk at the 1% (−TAIL1) of 5.224%, marginal expected shortfall (−MES) of

3.623%, long-run marginal expected shortfall (−LRMES) of 0.483%, systemic risk con-

tribution at the 5% level (−∆CoVaR5) of 0.834%, and systemic risk contribution at the

1% level (−∆CoVaR1) of 0.617%. For the key independent variable, the average value of

CRI Bank is 0.953, with a standard deviation of 10.038. CRI Bank ranges from−14.893
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to 29.634, with a higher value indicating greater climate risk. The average bank in our

sample has log of total assets (SIZE Bank) of 13.538 (mean total assets of $1.134 tril-

lion), equity ratio (EQRAT Bank) of 8.4%, market-to-book ratio (MTB Bank) of 1.362,

loans-to-assets ratio (LTA Bank) of 44.2%, deposit ratio (DEPO Bank) of 55.3%, nonin-

terest income ratio (NII Bank) of 2.5%, return on assets (ROA Bank) of 0.9%, operating

expense ratio (OEM Bank) of 5.3%, and growth in cost-to-income ratio (∆CIR Bank)

of −0.8%. These statistics suggest that the average bank tends to be very large, well-

capitalized, and efficient although these averages may mask substantial cross-sectional

and time-varying differences. Turning to the borrower controls, we find that the average

borrower firm in our sample has a log of total assets (SIZE Borrower) of 7.377 (mean total

assets of $6,572 million), market-to-book ratio (MTB Borrower) of 1.686, cash holding

ratio (CASH Borrower) of 8.1%, current ratio (CURRENT Borrower) of 0.44, interest

coverage (COVER Borrower) of 24.172, debt ratio (DEBT Borrower) of 29.2%, dividend

payout ratio (DPO Borrower) of 1.3%, profitability (EBITDA Borrower) of 16.6%, in-

tangible assets ratio (INTAN Borrower) of 20.1%, fixed assets ratio (PPE Borrower) of

33.4%, and growth in sales (∆SALES Borrower) of 14.7%. We also note that the average

value of log GDP per capita is 10.871 and 10.812 for lender banks’ and borrower firms’

states, respectively, and average value of GDP growth (∆GDP) is 1.315% and 1.285% for

lender banks’ and borrower firms’ states, respectively.

[Table 2 about here.]

4. Results

Table 3 reports the baseline results from regressions of banks’ tail and systemic risks

on our climate risk measure and control variables. The variable of interest is CRI Bank.

We find that β1, the coefficient for CRI Bank, is statistically significant at the 10% level
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for ∆CoVaR5, at the 5% level for TAIL5 and TAIL1, and at the 1% level for MES, LRMES

and ∆CoVaR1. For the purpose of interpretation, we normalize CRI Bank so that β1

captures the effect of a unit (one standard deviation) change in CRI Bank on Risk. β1

thus represents the percentage of additional Risk generated, away from the mean Risk,

associated with a one standard deviation increase in the pertinent CRI Bank. A unit

increase in CRI Bank leads to an increase of 3.1% in TAIL5, 8.0% in TAIL1, 8.7% in

MES, 2.5% in LRMES, 0.4% in ∆CoVaR5, and 0.9% in ∆CoVaR1. Overall, these results

suggest that a higher level of climate risk acquired through the lending channel leads

to greater banks’ tail risks and their systemic risk contribution. Adjusted R2 ranges

from 90.7% to 96.7%, suggesting that a substantial proportion of the variation in the

dependent variables are explained in the models identified.

[Table 3 about here.]

5. Robustness Tests

5.1. Instrumental Variables Approach

The instrumental variables (IV) approach is applicable to address endogeneity con-

cerns arising from omitted variables, measurement errors and simultaneity. The IV ap-

proach successfully address endogeneity problems if the following conditions are satisfied:

(1) the IV are correlated with endogenous regressors (relevance condition); (2) the IV are

uncorrelated with the error term (exogeneity condition); and (3) the IV do not directly

affect the dependent variable (exclusion condition). If conditions (2) and (3) are satisfied,

the IV are valid. If condition (1) is satisfied but the correlations between the IVs and

endogenous regressions are low, the IV are valid but weak.

The choices of IV are therefore important. We select two instruments: foreign loans

as a percentage of total loans (FOREIGN) and population density (POP) of the bor-
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rower’s state. These two instruments are suitable from both a theoretical and empirical

perspective. A more stringent home-country climate policy is associated with an increase

in banks’ cross-border loan share as a means to practise regulatory arbitrage (Benincasa,

2021; Benincasa et al., 2021). Albouy et al. (2016) find that population density is nega-

tively correlated with climate risk such that climate risk has both a short- and long-term

impact on individuals’ cross-state mobility and migration preferences.

Table 4 reports results using the IV approach. CRI Bank is found to have a positive

and statistically significant impact on bank tail risks and systemic risk contribution across

all model specifications. We perform postestimation tests including underidentification,

weak identification, and overidentification tests. All six model specifications reject the

under-identifying restrictions test: we reject the null hypothesis that the instruments

are uncorrelated with the endogenous regressor at the 1% level. We also reject the null

hypothesis of weak instruments at the 1% level, excluding instruments that are weakly

correlated with the endogenous regressor. Thus, the instruments are not weak. Since we

have two instruments and only one endogenous variable, we perform the Sargan-Hansen

test of overidentifying restrictions: under the joint null hypothesis that the instruments

are valid (i.e., uncorrelated with the error term, and that the excluded instruments are

correctly excluded from the estimated equation), the test statistic follows a χ2 distribu-

tion in the number of overidentifying restrictions. The test rejects the null hypothesis

for overidentifying restrictions across all model specifications, which indicates that the

instruments are overall valid. Hence, we conclude that the potential endogeneity problem

does not bias our results.

[Table 4 about here.]
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5.2. Alternative Climate Risk Measures

In this section, we describe our use of several alternative climate risk measures to

check the robustness of our results to the choice of climate risk measures. We create three

alternative climate risk measures: (1) an adjusted climate risk measure that accounts for

borrowers’ vulnerability to climate change; (2) a residual climate risk measure that is

orthogonal to common risk factors; and (3) a climate risk measure calculated using the

Germanwatch method.

5.2.1. Adjusted Climate Risk Measure

Climate risk events can inflict damage to physical assets, deprive firms of potential rev-

enue, and disrupt normal operations and lead to operational losses (Huang et al., 2017).

Industries operating on nondeployed and long-lived capital assets are more vulnerable to

damage to physical assets caused by extreme weather (Wilbanks et al., 2007; McCarthy

et al., 2001). Moreover, industries that depend on moderate weather, with a reliance on

both infrastructure and an extended supply chain, are likely to experience disruptions

in operations due to extreme weather conditions (Challinor et al., 2014; Wilbanks et al.,

2007). Huang et al. (2017) consider agriculture, energy (including mining and oil extrac-

tion), food products, healthcare, communications, business services, and transportation

as vulnerable industries. We employ the industry classification developed by ING (2020)

that accounts for the extremity in different industries’ sensitivity to climate conditions

and classifies industries into the three categories of high, medium, and low vulnerabil-

ity to climate change (Appendix B). Industries such as coal, oil and gas, air and water

transportation, and construction are considered as highly vulnerable to climate change.

The varying levels of borrower firms’ vulnerability to climate change is expected to

affect loan quality and credit risk exposure for lender banks differently. Therefore, we

calibrate an adjusted climate risk index that accounts for borrower firms’ vulnerability

to climate change expressed as follows:
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CRI Bank Adji,t =
∑ Li,j,tW ∈ {1, 2, 3}

TLi,t

CRI Statej,t, (12)

where Li,j,t, TLi,t, and CRI Statej,t are the same as defined in Equation (1) and (2). W

is a re-weighting scheme that accounts for the borrower industry’s vulnerability to climate

change, as reported in Appendix B. W takes a value of 1, 2, and 3 when a borrower firm’s

industry presents low, medium, and high vulnerability to climate change, respectively.

Results based on the use of CRI Bank Adj are reported in Table 5. Compared to the

baseline results reported in Table 3, both the effect size and statistical significance of the

climate risk variable increase across all model specifications. These findings confirm that

borrowers’ vulnerability to climate change has an incremental impact on the positive

association between climate risk channeled through lending, and banks’ tail risks and

systemic risk contribution.

[Table 5 about here.]

5.2.2. Residual Climate Risk Measure

Extreme weather events may systematically influence stock market performance (Lan-

fear et al., 2019). In order to rule out the possibility that our climate risk measure captures

predominantly or acts as a proxy for the systematic effect of climate risk events on the

stock market, we create an alternative climate risk measure, CRI Bank Res, that is or-

thogonal to common risk factors identified in prior studies (Fabrizi et al., 2021; Bessler

et al., 2015; Bessler and Kurmann, 2014), including interest rate risk, credit risk, commod-

ity risk, foreign exchange risk, market risk, political risk, real estate risk, sovereign risk,

and VIX Index. A detailed description of these common risk factors is reported in Ap-

pendix C. CRI Bank Res is computed as the residual from the regression of CRI Bank

on these common risk factors. We find consistent results based on CRI Bank Res and
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report them in Table 6.

[Table 6 about here.]

5.2.3. Germanwatch Method

Our main construct for the state-level climate risk employs a first principal component

of six key climate risk indicators: (1) number of death, (2) number of deaths per 100,000

inhabitants, (3) sum of losses in USD at purchasing power parity (PPP), (4) losses per

unit of Gross Domestic Product (GDP), (5) number of events, and (6) loss per event. To

check the sensitivity of our results to the method to calibrating climate risk, we apply

the Germanwatch method. Each state’s climate risk index is the sum of the state’s score

in the first four indicating categories (i.e., indicators 1 to 4):

(13)CRI State GW =
1

6
×Death+

1

3
× Death

Population
+

1

6
× Loss+

1

3
× Loss

GDP
.

We then calculate the bank-level climate risk exposure in the same way detailed in

Section 2.2 but based on the above Germanwatch state-level climate risk index. Table 7

reports results based on this alternative climate risk measure. We find consistent results

across all model specifications except for the coefficient of TAIL5 (Column 1) being not

significant but preserving the correct sign.

[Table 7 about here.]

5.3. Interaction Tests

The climate risk measure used in our main analysis is the sum of weighted outstanding

loans by climate risk index of borrowers’ states. The fact that banks experience higher tail

risks and make greater systemic risk contribution could be driven by lending regardless of

the borrowers’ exposure to climate risk. To take this into account, we check the robustness

19



of our results to the way bank-level climate risk is constructed by performing analyses that

include the bank-level climate risk in the decomposed form (i.e., weighted loan shares;

state-level climate risk of the borrower’s state) and include them as an interaction term.

We first define a dummy variable, CRI State High, that takes a value of one if the

climate risk index of the borrower’s state is in the top quartile of its empirical distribution,

and zero otherwise. We then interact CRI State High with the lending share of a bank

to the specific state in a given year (Loan Share); the interaction term thus captures

the difference in the impact on bank risks between loans issued to borrowers in high- and

low-climate risk states. Table 8 reports a positive and statistically significant coefficient

for the interaction term across all model specifications, which is consistent with the main

inference that loans made to borrowers in states with higher climate risk are associated

with larger lender banks’ tail risks and systemic risk contribution.

[Table 8 about here.]

5.4. GARCH-∆CoV aR

Our main systemic risk measure, ∆CoV aR, is computed using the quantile estimation

procedure detailed in Section 3. One potential shortcoming of this approach is that it

models time-varying moments merely as a function of aggregate state variables (Adrian

and Brunnermeier, 2016). We use the bivariate diagonal GARCH model as an alternative

method to calculate the time-varying covariance between banks and the financial system,

which explicitly captures the dynamic evolution of systemic risk contributions. Table 9

reports regression results based on GARCH-∆CoV aR, which is consistent with the base-

line results. However, the sample size is relatively smaller than the one for the baseline

test because the GARCH estimation does not converge for all banks. Our baseline results

do not appear to be dependent on the estimation method used to compute ∆CoV aR.
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[Table 9 about here.]

5.5. Weighted Least Squares

Panel B of Table 1 indicates a substantial variation in the number observations across

states where lender banks are headquartered. For this reason, we use state-weighted

least squares estimation to control for the different weights of lender bank states in the

sample. State Population is used as the weight. Results for this specification tests are

reported in Panel A of Table 10. We further employ a capitalization-weighted least

squares specification to account for possible greater contributions to systemic risk by

larger banks. Laeven et al. (2016) find that larger banks have significantly higher systemic

risk contributions. The weight is computed as a bank’s end-of-year market capitalization

divided by the total capitalization of the financial industry at the same point in time.

We report results for this specification in Panel B of Table 10. Overall, results using the

weighted least squares estimation provide further support for the baseline findings.

[Table 10 about here.]

5.6. Standard Errors

We perform two additional tests to check the robustness of our results to the method

standard errors are computed. First, we cluster standard errors at borrowers’ state level

and obtain similar results as reported in Panel A of Table 11, with only TAIL1 being

an exception. Second, we follow Newey and West (1987) to compute heteroskedasticity-

and autocorrelation-consistent (HAC) standard errors that allow for up to two periods of

autocorrelation, and report results in Panel B of Table 11. Overall, these results confirm

that our main results are robust to different methods of calculating standard errors.

[Table 11 about here.]
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6. Conclusions

This paper provides evidence that more climate risk exposure acquired through the

lending channel is associated with greater banks’ tail risks and systemic risk contribution.

This effect is both statistically and economically significant: An increase by one standard

deviation in the bank-level climate risk measure leads to an increase of 3.1% in tail

risk at 5%, 8.0% in tail risk at 1%, 8.7% in the marginal expected shortfall, 2.5% in

the long-run marginal expected shortfall, 0.4% in systemic risk contribution at 5%, and

0.9% in systemic risk contribution at 1%. Our analysis starts with crafting a bank-level

climate risk measure using the NOAA Billion-Dollar Weather and Climate Disasters data

and Dealscan syndicated lending data, followed by tests of the impact of banks’ climate

risk exposure on their tail risks and systemic risk contribution based on a sample of

7,830 lender-borrower-year observations comprised of 31 lender banks and 1,778 borrower

firms for the period of 1999–2017. To alleviate endogeneity concerns, we employ an

instrumental variables approach that avails of an exogenous source of variation in bank-

level climate risk. Our results are robust to several alternative climate risk measures,

including an adjusted climate risk measure accounting for borrowers’ vulnerability to

climate change, a residual climate risk measure that is orthogonal to common risk factors,

and an alternative climate risk measure computed following the Germanwatch method.

Our results also hold with interaction tests that decompose the climate risk measure,

an alternative method to estimate systemic risk, weighted least squares estimators, and

alternative methods to compute standard errors.

This paper addresses a recent call for developing methodologies that facilitate a suc-

cessful assessment of the risks that climate change poses to financial stability (Battiston

et al., 2021), and provides validation on central banks’ involvement in safeguarding mon-

etary and financial stability against climate risk. We focus on the impact of physical

climate risk on bank tail risks and systemic risk contribution, while remaining silent on
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the effects of transition climate risk. We acknowledge that the latter represents an in-

teresting avenue for future research. Future work could, for instance, attempt to draw

the dynamics of the interaction between physical and transition climate risks, and its

outcomes at various levels. The major challenge in this respect is designing an identi-

fication strategy addressing the feedback effect between climate risk events and climate

risk policy. Another aspect that is not considered in our setting is the effect of bank

interconnectedness on climate risk transmission, which presents another opportunity for

future research to explore: how do banks’ climate risks transmit through a network of

interconnectedness?
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Figure 1: Cumulative Losses (USD bn) of Climate Risk Events 1980–2020

Figure 2: Cumulative Frequency of Climate Risk Events 1980–2020
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Table 1: Sample Composition

This table reports the sample composition. Panel A reports the sample composition by year. Panel B reports the sample
composition by lender bank state. Panel C reports the sample composition by borrower firm state.

Panel A. Sample Composition by Year

Year Frequency Percent Cumulative

1999 379 4.84 4.84
2000 432 5.52 10.36
2001 491 6.27 16.63
2002 472 6.03 22.66
2003 526 6.72 29.37
2004 579 7.39 36.77
2005 589 7.52 44.29
2006 489 6.25 50.54
2007 444 5.67 56.21
2008 271 3.46 59.67
2009 246 3.14 62.81
2010 376 4.80 67.61
2011 585 7.47 75.08
2012 421 5.38 80.46
2013 408 5.21 85.67
2014 406 5.19 90.86
2015 350 4.47 95.33
2016 305 3.90 99.22
2017 61 0.78 100.00

Total 7,830 100.00

Panel B. Sample Composition by Lender State

State Frequency Percent Cumulative

Alabama 29 0.37 0.37
California 955 12.20 12.57
Georgia 217 2.77 15.34
Illinois 276 3.52 18.86
Louisiana 8 0.10 18.97
Massachusetts 191 2.44 21.40
Minnesota 156 1.99 23.40
New Jersey 3 0.04 23.44
New York 2,646 33.79 57.23
North Carolina 2,859 36.51 93.74
Ohio 186 2.38 96.12
Pennsylvania 251 3.21 99.32
Rhode Island 10 0.13 99.45
Texas 36 0.46 99.91
Utah 5 0.06 99.97
Wisconsin 2 0.03 100.00

Total 7,830 100.00

Panel C. Sample Composition by Borrower State

State Frequency Percent Cumulative

Alabama 33 0.42 0.42
Alaska 3 0.04 0.46
Arizona 161 2.06 2.52
Arkansas 76 0.97 3.49
California 509 6.50 9.99
Colorado 263 3.36 13.35
Connecticut 183 2.34 15.68
Delaware 13 0.17 15.85
Florida 390 4.98 20.83
Georgia 284 3.63 24.46
Hawaii 9 0.11 24.57
Idaho 26 0.33 24.90
Illinois 495 6.32 31.23
Indiana 132 1.69 32.91
Iowa 17 0.22 33.13
Kansas 45 0.57 33.70
Kentucky 83 1.06 34.76
Louisiana 85 1.09 35.85
Maine 12 0.15 36.00
Maryland 99 1.26 37.27
Massachusetts 247 3.15 40.42
Michigan 190 2.43 42.85
Minnesota 212 2.71 45.56
Mississippi 3 0.04 45.59
Missouri 225 2.87 48.47
Nebraska 29 0.37 48.84
Nevada 81 1.03 49.87
New Hampshire 20 0.26 50.13
New Jersey 310 3.96 54.09
New Mexico 14 0.18 54.27
New York 204 2.61 56.87
North Carolina 125 1.60 58.47
North Dakota 21 0.27 58.74
Ohio 383 4.89 63.63
Oklahoma 85 1.09 64.71
Oregon 102 1.30 66.02
Pennsylvania 291 3.72 69.73
Rhode Island 46 0.59 70.32
South Carolina 53 0.68 71.00
South Dakota 9 0.11 71.11
Tennessee 185 2.36 73.47
Texas 1,374 17.55 91.02
Utah 48 0.61 91.63
Vermont 10 0.13 91.76
Virginia 260 3.32 95.08
Washington 143 1.83 96.91
West Virginia 14 0.18 97.09
Wisconsin 228 2.91 100.00

Total 7,830 100.00
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Table 2: Descriptive Statistics

This table presents descriptive statistics of the variables studied. N refers to the number of observations. S.D. is the
standard deviation. Min and Max refer to the minimum and maximum values, respectively. Variables are defined in
Appendix A.

N Mean S.D. Min Median Max

−TAIL5 7,830 3.126 1.911 0.969 2.712 14.354
−TAIL1 7,830 5.224 3.913 1.551 4.328 27.258
−MES 7,830 3.623 2.637 0.567 3.068 14.284
−LRMES 7,830 0.483 0.185 0.100 0.480 0.973
−∆CoVaR5 7,830 0.834 0.296 0.256 0.775 2.284
−∆CoVaR1 7,830 0.617 0.331 0.167 0.601 2.675
CRI Bank 7,830 0.953 10.038 -14.893 -0.849 29.634
SIZE Bank 7,830 13.538 1.086 8.404 13.920 14.728
EQRAT Bank 7,830 0.084 0.014 0.040 0.083 0.118
MTB Bank 7,830 1.362 0.533 0.259 1.339 2.940
LTA Bank 7,830 0.442 0.120 0.121 0.440 0.740
LLP Bank 7,830 0.005 0.005 0.000 0.004 0.022
DEPO Bank 7,830 0.553 0.094 0.247 0.552 0.864
NII Bank 7,830 0.025 0.006 0.010 0.024 0.050
ROA Bank 7,830 0.009 0.005 -0.006 0.010 0.019
OEM Bank 7,830 0.053 0.015 0.028 0.054 0.134
∆CIR Bank 7,830 -0.008 0.096 -0.192 -0.016 0.246
GDP Bank 7,830 10.871 0.147 10.647 10.845 11.155
∆GDP Bank 7,830 1.315 2.022 -5.546 1.454 5.207
SIZE Borrower 7,830 7.337 1.662 2.015 7.312 10.929
MTB Borrower 7,830 1.686 0.868 0.690 1.422 6.305
CASH Borrower 7,830 0.081 0.100 0.000 0.042 0.598
CURRENT Borrower 7,830 0.441 0.395 0.000 0.339 2.617
COVER Borrower 7,830 24.172 60.542 -28.588 7.660 429.051
DEBT Borrower 7,830 0.292 0.190 0.000 0.278 1.111
DPO Borrower 7,830 0.013 0.022 0.000 0.003 0.173
EBITDA Borrower 7,830 0.166 0.153 -0.697 0.137 0.683
INTAN Borrower 7,830 0.201 0.198 0.000 0.139 0.750
PPE Borrower 7,830 0.334 0.249 0.010 0.263 0.911
∆SALES Borrower 7,830 0.147 0.432 -0.699 0.076 4.956
GDP Borrower 7,830 10.812 0.134 10.476 10.809 11.131
∆GDP Borrower 7,830 1.285 2.164 -5.463 1.407 6.020
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Table 3: Baseline Results

This table reports test results of the impact of the banks’ climate risk exposure on their tail and systemic risks. The
regressions include bank, borrower and year fixed effects (not reported). Standard errors are adjusted for clustering at the
bank-borrower (lending relationship) level. ***, ** and * indicate statistical significance at the 1%, 5%, and 10% levels,
respectively. Robust t-statistics are reported in parentheses. Variables are defined in Appendix A.

(1) (2) (3) (4) (5) (6)
−TAIL5 −TAIL1 −MES −LRMES −∆CoVaR5 −∆CoVaR1

CRI Bank 0.031** 0.080** 0.087*** 0.025*** 0.004* 0.009***
(2.077) (2.152) (4.547) (15.156) (1.859) (2.744)

SIZE Bank -0.610*** -1.259*** -0.621*** -0.024** -0.035*** 0.094***
(-6.454) (-4.658) (-4.383) (-2.355) (-2.609) (5.501)

EQRAT Bank -13.531*** -6.218 -7.716*** -1.004*** 1.461*** 2.482***
(-7.469) (-1.478) (-3.018) (-4.178) (8.201) (9.136)

MTB Bank -0.753*** -1.763*** -0.661*** -0.040*** -0.020*** 0.035***
(-9.311) (-8.266) (-6.838) (-5.231) (-2.752) (3.028)

LTA Bank 0.583* -1.680** 1.515*** 0.010 0.316*** 0.424***
(1.741) (-2.151) (4.061) (0.335) (8.266) (7.752)

LLP Bank 5.293 120.632*** 38.338*** 7.157*** 3.411*** -6.372***
(0.561) (6.269) (3.491) (7.383) (3.380) (-3.906)

DEPO Bank -1.760*** -2.806*** -1.733*** -0.093*** -0.062 0.057
(-4.580) (-2.704) (-3.695) (-2.909) (-1.386) (0.884)

NII Bank 30.917*** 9.567 60.605*** 3.200*** 4.444*** 7.083***
(5.853) (0.836) (9.637) (6.610) (8.794) (9.274)

ROA Bank -67.935*** -49.993*** -107.255*** -5.330*** -5.181*** -10.009***
(-8.777) (-2.929) (-11.679) (-8.638) (-7.529) (-9.076)

OEM Bank 7.071* 28.508*** -24.250*** -1.344*** -2.923*** -3.885***
(1.709) (2.937) (-5.245) (-4.847) (-8.626) (-6.138)

∆CIR Bank -0.230 -0.458 -0.833*** -0.051*** 0.023 0.082***
(-1.582) (-1.324) (-4.438) (-4.072) (1.461) (2.623)

GDP Bank 5.040*** 11.439*** 6.702*** -0.202*** 0.739*** 0.448***
(7.656) (7.302) (7.825) (-3.169) (10.515) (4.549)

∆GDP Bank 0.064*** 0.041** -0.000 -0.003*** -0.006*** -0.010***
(8.233) (2.164) (-0.046) (-4.068) (-8.257) (-8.789)

SIZE Borrower 0.005 -0.052 -0.017 -0.003* -0.001 -0.004
(0.298) (-1.142) (-0.764) (-1.938) (-0.357) (-1.215)

MTB Borrower -0.015 -0.066* -0.037** -0.002** -0.000 -0.003
(-1.117) (-1.911) (-2.071) (-1.988) (-0.231) (-1.359)

CASH Borrower 0.030 0.354 0.313 0.021* 0.006 -0.010
(0.190) (0.881) (1.535) (1.751) (0.370) (-0.413)

CURRENT Borrower -0.001 -0.003 0.003 0.000 -0.001 -0.001
(-0.036) (-0.048) (0.119) (0.045) (-0.406) (-0.265)

COVER Borrower 0.000*** 0.001 0.000* 0.000 0.000 0.000
(2.635) (1.232) (1.676) (0.717) (0.306) (0.244)

DEBT Borrower -0.086 -0.344** -0.076 0.000 -0.003 -0.001
(-1.485) (-2.149) (-1.012) (0.014) (-0.352) (-0.069)

DPO Borrower -0.246 0.462 -0.149 0.037 -0.077 -0.089
(-0.558) (0.358) (-0.219) (0.808) (-1.395) (-1.006)

EBITDA Borrower -0.269** -0.549* -0.287** -0.006 -0.016 -0.032*
(-2.357) (-1.808) (-2.074) (-0.841) (-1.533) (-1.744)

INTAN Borrower 0.068 0.226 0.177 0.020** 0.005 0.005
(0.587) (0.788) (1.276) (2.077) (0.366) (0.264)

PPE Borrower 0.012 -0.003 0.141 0.016 -0.003 -0.003
(0.078) (-0.008) (0.786) (1.391) (-0.177) (-0.116)

∆SALES Borrower 0.018 0.056 0.047** 0.001 0.002 0.001
(1.076) (1.350) (2.216) (0.563) (0.841) (0.302)

GDP Borrower -0.012 0.468 -0.128 -0.038** -0.005 -0.009
(-0.055) (0.844) (-0.535) (-2.234) (-0.196) (-0.215)

∆GDP Borrower 0.008* 0.013 0.012** 0.000 0.000 -0.000
(1.695) (0.987) (2.017) (0.729) (0.068) (-0.297)

Constant -41.018*** -103.337*** -56.918*** 3.626*** -6.773*** -5.699***
(-5.909) (-6.312) (-6.436) (5.663) (-9.410) (-5.255)

Bank FE Yes Yes Yes Yes Yes Yes
Borrower FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Observations 7,830 7,830 7,830 7,830 7,830 7,830
Adjusted R2 0.945 0.907 0.953 0.953 0.967 0.938
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Table 4: Instrumental Variables Approach Results

This table reports instrumental variables two-stage least squares regression results of the impact of the banks’ climate risk
exposure on their tail and systemic risks. The regressions include bank, borrower and year fixed effects (not reported).
Standard errors are adjusted for clustering at the bank-borrower (lending relationship) level. ***, ** and * indicate
statistical significance at the 1%, 5%, and 10% levels, respectively. Robust t-statistics are reported in parentheses. Variables
are defined in Appendix A.

(1) (2) (3) (4) (5) (6)
−TAIL5 −TAIL1 −MES −LRMES −∆CoVaR5 −∆CoVaR1

CRI Bank 2.891*** 4.324*** 2.397*** 0.135*** 0.067** 0.589***
(4.550) (4.027) (4.265) (4.394) (2.184) (4.666)

SIZE Bank -2.897*** -4.652*** -2.468*** -0.112*** -0.086*** -0.826***
(-5.429) (-5.160) (-5.228) (-4.347) (-3.319) (-4.762)

EQRAT Bank -18.658*** -13.826** -11.856*** -1.201*** 1.347*** 3.540***
(-5.351) (-2.346) (-3.844) (-7.128) (7.974) (4.760)

MTB Bank -1.528*** -2.913*** -1.286*** -0.070*** -0.038*** -0.177***
(-7.163) (-8.083) (-6.818) (-6.761) (-3.646) (-3.190)

LTA Bank 2.895*** 1.750 3.382*** 0.098*** 0.368*** -0.085
(3.807) (1.362) (5.026) (2.671) (9.981) (-0.553)

LLP Bank 82.138*** 234.644*** 100.395*** 10.102*** 5.121*** -28.318***
(3.666) (6.198) (5.066) (9.332) (4.719) (-6.862)

DEPO Bank -9.516*** -14.313*** -7.996*** -0.390*** -0.235*** -0.843***
(-5.140) (-4.576) (-4.883) (-4.361) (-2.621) (-2.932)

NII Bank 28.143*** 5.451 58.364*** 3.094*** 4.383*** 15.726***
(3.430) (0.393) (8.041) (7.804) (11.026) (7.702)

ROA Bank -6.901 40.561 -57.967*** -2.991*** -3.823*** -21.512***
(-0.381) (1.324) (-3.615) (-3.415) (-4.354) (-7.661)

OEM Bank -41.025*** -42.851** -63.091*** -3.187*** -3.993*** -18.673***
(-3.306) (-2.044) (-5.748) (-5.315) (-6.643) (-7.059)

∆CIR Bank 4.108*** 5.979*** 2.670*** 0.115** 0.120** 0.761***
(4.085) (3.518) (3.002) (2.373) (2.460) (4.032)

GDP Bank 3.401*** 9.007*** 5.378*** -0.264*** 0.702*** 3.153***
(3.069) (4.811) (5.488) (-4.940) (13.085) (8.436)

∆GDP Bank 0.146*** 0.163*** 0.066*** -0.000 -0.004*** -0.011***
(6.217) (4.114) (3.178) (-0.280) (-3.594) (-2.882)

SIZE Borrower 0.020 -0.030 -0.005 -0.002 -0.000 -0.007
(0.452) (-0.410) (-0.133) (-1.140) (-0.206) (-0.924)

MTB Borrower 0.012 -0.026 -0.015 -0.001 0.000 -0.006
(0.374) (-0.472) (-0.530) (-0.893) (0.170) (-1.085)

CASH Borrower 0.638* 1.256** 0.804*** 0.045*** 0.019 0.019
(1.813) (2.114) (2.584) (2.633) (1.142) (0.314)

CURRENT Borrower -0.056 -0.084 -0.041 -0.002 -0.003 -0.008
(-0.982) (-0.877) (-0.818) (-0.733) (-0.915) (-0.824)

COVER Borrower 0.001 0.001 0.000 0.000 0.000 -0.000
(1.356) (1.173) (1.397) (0.794) (0.495) (-0.272)

DEBT Borrower -0.176 -0.477* -0.148 -0.003 -0.005 -0.017
(-1.136) (-1.822) (-1.083) (-0.449) (-0.606) (-0.630)

DPO Borrower -2.684** -3.156 -2.118* -0.057 -0.131** -0.446**
(-2.101) (-1.462) (-1.874) (-0.918) (-2.113) (-2.002)

EBITDA Borrower -0.365* -0.692** -0.364** -0.010 -0.018* -0.021
(-1.870) (-2.096) (-2.106) (-1.049) (-1.910) (-0.606)

INTAN Borrower 0.485* 0.846* 0.514** 0.036*** 0.014 0.017
(1.809) (1.865) (2.167) (2.772) (1.067) (0.367)

PPE Borrower 0.480 0.693 0.520* 0.034** 0.008 0.027
(1.466) (1.251) (1.792) (2.176) (0.486) (0.470)

∆SALES Borrower -0.014 0.009 0.021 -0.000 0.001 -0.004
(-0.315) (0.125) (0.553) (-0.115) (0.581) (-0.497)

GDP Borrower -0.282 0.068 -0.346 -0.048* -0.011 -0.049
(-0.514) (0.073) (-0.714) (-1.823) (-0.428) (-0.503)

∆GDP Borrower 0.012 0.018 0.015 0.000 0.000 -0.000
(1.063) (0.977) (1.534) (0.844) (0.212) (-0.174)

Bank FE Yes Yes Yes Yes Yes Yes
Borrower FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Underidentification (P -value) 0.000 0.000 0.000 0.000 0.000 0.000
Weak identification (F -statistic) 11.751*** 11.751*** 11.751*** 11.751*** 11.751*** 11.751***
Overidentification (P -value) 0.843 0.681 0.733 0.252 0.230 0.303
Observations 7,830 7,830 7,830 7,830 7,830 7,830
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Table 5: Alternative Climate Risk Measure: Adjusting for Borrowers’ Vulnerability to Climate Change

This table reports test results of the impact of the banks’ climate risk exposure on their tail and systemic risks based on the
use of an alternative climate risk measure adjusting for borrowers’ vulnerability to climate change. The regressions include
bank, borrower and year fixed effects (not reported). Standard errors are adjusted for clustering at the bank-borrower
(lending relationship) level. ***, ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
Robust t-statistics are reported in parentheses. Variables are defined in Appendix A.

(1) (2) (3) (4) (5) (6)
−TAIL5 −TAIL1 −MES −LRMES −∆CoVaR5 −∆CoVaR1

CRI Bank Adj 0.064*** 0.122*** 0.112*** 0.025*** 0.006*** 0.012***
(4.076) (3.143) (5.576) (15.451) (2.919) (3.512)

SIZE Bank -0.634*** -1.289*** -0.637*** -0.023** -0.036*** 0.092***
(-6.687) (-4.761) (-4.480) (-2.233) (-2.715) (5.378)

EQRAT Bank -13.702*** -6.507 -7.955*** -1.046*** 1.447*** 2.455***
(-7.535) (-1.544) (-3.106) (-4.307) (8.128) (9.046)

MTB Bank -0.764*** -1.780*** -0.672*** -0.041*** -0.021*** 0.034***
(-9.409) (-8.311) (-6.918) (-5.289) (-2.844) (2.895)

LTA Bank 0.598* -1.668** 1.514*** 0.005 0.317*** 0.424***
(1.795) (-2.142) (4.064) (0.160) (8.271) (7.756)

LLP Bank 6.737 122.829*** 39.976*** 7.353*** 3.519*** -6.185***
(0.710) (6.385) (3.633) (7.521) (3.484) (-3.778)

DEPO Bank -1.857*** -2.935*** -1.813*** -0.094*** -0.069 0.047
(-4.845) (-2.828) (-3.863) (-2.946) (-1.519) (0.730)

NII Bank 30.547*** 8.879 59.989*** 3.071*** 4.412*** 7.015***
(5.795) (0.774) (9.575) (6.365) (8.724) (9.166)

ROA Bank -66.604*** -47.896*** -105.633*** -5.104*** -5.079*** -9.825***
(-8.602) (-2.797) (-11.513) (-8.219) (-7.372) (-8.867)

OEM Bank 6.430 27.634*** -24.816*** -1.366*** -2.967*** -3.952***
(1.544) (2.832) (-5.326) (-4.913) (-8.763) (-6.218)

∆CIR Bank -0.166 -0.366 -0.771*** -0.046*** 0.028* 0.090***
(-1.114) (-1.034) (-4.003) (-3.651) (1.724) (2.809)

GDP Bank 4.940*** 11.259*** 6.546*** -0.233*** 0.730*** 0.431***
(7.475) (7.141) (7.645) (-3.644) (10.352) (4.347)

∆GDP Bank 0.065*** 0.043** 0.001 -0.003*** -0.006*** -0.010***
(8.359) (2.273) (0.113) (-3.823) (-8.084) (-8.562)

SIZE Borrower 0.006 -0.051 -0.016 -0.003* -0.001 -0.004
(0.318) (-1.131) (-0.746) (-1.894) (-0.345) (-1.198)

MTB Borrower -0.015 -0.066* -0.037** -0.002** -0.000 -0.003
(-1.101) (-1.906) (-2.069) (-2.007) (-0.221) (-1.352)

CASH Borrower 0.038 0.364 0.319 0.021* 0.006 -0.009
(0.238) (0.906) (1.567) (1.750) (0.401) (-0.384)

CURRENT Borrower -0.001 -0.004 0.003 0.000 -0.001 -0.001
(-0.064) (-0.062) (0.101) (0.050) (-0.419) (-0.277)

COVER Borrower 0.000*** 0.001 0.000* 0.000 0.000 0.000
(2.662) (1.249) (1.703) (0.777) (0.321) (0.266)

DEBT Borrower -0.088 -0.346** -0.077 0.000 -0.003 -0.001
(-1.508) (-2.161) (-1.027) (0.008) (-0.363) (-0.079)

DPO Borrower -0.269 0.436 -0.162 0.039 -0.078 -0.090
(-0.609) (0.337) (-0.237) (0.865) (-1.422) (-1.025)

EBITDA Borrower -0.269** -0.549* -0.285** -0.006 -0.016 -0.031*
(-2.347) (-1.802) (-2.061) (-0.773) (-1.528) (-1.738)

INTAN Borrower 0.073 0.232 0.181 0.020** 0.005 0.005
(0.630) (0.809) (1.302) (2.059) (0.389) (0.286)

PPE Borrower 0.017 0.003 0.144 0.016 -0.002 -0.002
(0.113) (0.009) (0.806) (1.372) (-0.156) (-0.098)

∆SALES Borrower 0.017 0.055 0.046** 0.001 0.002 0.001
(1.044) (1.328) (2.186) (0.517) (0.823) (0.281)

GDP Borrower -0.012 0.471 -0.125 -0.037** -0.005 -0.008
(-0.055) (0.851) (-0.523) (-2.168) (-0.192) (-0.207)

∆GDP Borrower 0.008* 0.013 0.012** 0.000 0.000 -0.000
(1.688) (0.980) (2.000) (0.657) (0.059) (-0.311)

Constant -39.505*** -100.868*** -54.939*** 3.938*** -6.654*** -5.477***
(-5.657) (-6.104) (-6.189) (6.112) (-9.181) (-4.984)

Bank FE Yes Yes Yes Yes Yes Yes
Borrower FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Observations 7,830 7,830 7,830 7,830 7,830 7,830
Adjusted R2 0.945 0.907 0.953 0.953 0.967 0.938
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Table 6: Alternative Climate Risk Measure: Residual Climate Risk

This table reports test results of the impact of the banks’ climate risk exposure on their tail and systemic risks based on
the use of an alternative climate risk measure computed as a residual of common risk factors. The regressions include bank,
borrower and year fixed effects (not reported). Standard errors are adjusted for clustering at the bank-borrower (lending
relationship) level. ***, ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Robust
t-statistics are reported in parentheses. Variables are defined in Appendix A.

(1) (2) (3) (4) (5) (6)
−TAIL5 −TAIL1 −MES −LRMES −∆CoVaR5 −∆CoVaR1

CRI Bank Res 0.015** 0.040** 0.043*** 0.013*** 0.002* 0.005***
(2.077) (2.152) (4.547) (15.156) (1.859) (2.744)

SIZE Bank -0.610*** -1.259*** -0.621*** -0.024** -0.035*** 0.094***
(-6.454) (-4.658) (-4.383) (-2.355) (-2.609) (5.501)

EQRAT Bank -13.531*** -6.218 -7.716*** -1.004*** 1.461*** 2.482***
(-7.469) (-1.478) (-3.018) (-4.178) (8.201) (9.136)

MTB Bank -0.753*** -1.763*** -0.661*** -0.040*** -0.020*** 0.035***
(-9.311) (-8.266) (-6.838) (-5.231) (-2.752) (3.028)

LTA Bank 0.583* -1.680** 1.515*** 0.010 0.316*** 0.424***
(1.741) (-2.151) (4.061) (0.335) (8.266) (7.752)

LLP Bank 5.293 120.632*** 38.338*** 7.157*** 3.411*** -6.372***
(0.561) (6.269) (3.491) (7.383) (3.380) (-3.906)

DEPO Bank -1.760*** -2.806*** -1.733*** -0.093*** -0.062 0.057
(-4.580) (-2.704) (-3.695) (-2.909) (-1.386) (0.884)

NII Bank 30.917*** 9.567 60.605*** 3.200*** 4.444*** 7.083***
(5.853) (0.836) (9.637) (6.610) (8.794) (9.274)

ROA Bank -67.935*** -49.993*** -107.255*** -5.330*** -5.181*** -10.009***
(-8.777) (-2.929) (-11.679) (-8.638) (-7.529) (-9.076)

OEM Bank 7.071* 28.508*** -24.250*** -1.344*** -2.923*** -3.885***
(1.709) (2.937) (-5.245) (-4.847) (-8.626) (-6.138)

∆CIR Bank -0.230 -0.458 -0.833*** -0.051*** 0.023 0.082***
(-1.582) (-1.324) (-4.438) (-4.072) (1.461) (2.623)

GDP Bank 5.040*** 11.439*** 6.702*** -0.202*** 0.739*** 0.448***
(7.656) (7.302) (7.825) (-3.169) (10.515) (4.549)

∆GDP Bank 0.064*** 0.041** -0.000 -0.003*** -0.006*** -0.010***
(8.233) (2.164) (-0.046) (-4.068) (-8.257) (-8.789)

SIZE Borrower 0.005 -0.052 -0.017 -0.003* -0.001 -0.004
(0.298) (-1.142) (-0.764) (-1.938) (-0.357) (-1.215)

MTB Borrower -0.015 -0.066* -0.037** -0.002** -0.000 -0.003
(-1.117) (-1.911) (-2.071) (-1.988) (-0.231) (-1.359)

CASH Borrower 0.030 0.354 0.313 0.021* 0.006 -0.010
(0.190) (0.881) (1.535) (1.751) (0.370) (-0.413)

CURRENT Borrower -0.001 -0.003 0.003 0.000 -0.001 -0.001
(-0.036) (-0.048) (0.119) (0.045) (-0.406) (-0.265)

COVER Borrower 0.000*** 0.001 0.000* 0.000 0.000 0.000
(2.635) (1.232) (1.676) (0.717) (0.306) (0.244)

DEBT Borrower -0.086 -0.344** -0.076 0.000 -0.003 -0.001
(-1.485) (-2.149) (-1.012) (0.014) (-0.352) (-0.069)

DPO Borrower -0.246 0.462 -0.149 0.037 -0.077 -0.089
(-0.558) (0.358) (-0.219) (0.808) (-1.395) (-1.006)

EBITDA Borrower -0.269** -0.549* -0.287** -0.006 -0.016 -0.032*
(-2.357) (-1.808) (-2.074) (-0.841) (-1.533) (-1.744)

INTAN Borrower 0.068 0.226 0.177 0.020** 0.005 0.005
(0.587) (0.788) (1.276) (2.077) (0.366) (0.264)

PPE Borrower 0.012 -0.003 0.141 0.016 -0.003 -0.003
(0.078) (-0.008) (0.786) (1.391) (-0.177) (-0.116)

∆SALES Borrower 0.018 0.056 0.047** 0.001 0.002 0.001
(1.076) (1.350) (2.216) (0.563) (0.841) (0.302)

GDP Borrower -0.012 0.468 -0.128 -0.038** -0.005 -0.009
(-0.055) (0.844) (-0.535) (-2.234) (-0.196) (-0.215)

∆GDP Borrower 0.008* 0.013 0.012** 0.000 0.000 -0.000
(1.695) (0.987) (2.017) (0.729) (0.068) (-0.297)

Constant -41.018*** -103.337*** -56.918*** 3.626*** -6.773*** -5.699***
(-5.909) (-6.312) (-6.436) (5.663) (-9.410) (-5.255)

Bank FE Yes Yes Yes Yes Yes Yes
Borrower FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Observations 7,830 7,830 7,830 7,830 7,830 7,830
Adjusted R2 0.945 0.907 0.953 0.953 0.967 0.938
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Table 7: Alternative Climate Risk Measure: Germanwatch Method

This table reports test results of the impact of the banks’ climate risk exposure on their tail and systemic risks based on
the use of an alternative climate risk measure computed using the Germanwatch method. The regressions include bank,
borrower and year fixed effects (not reported). Standard errors are adjusted for clustering at the bank-borrower (lending
relationship) level. ***, ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Robust
t-statistics are reported in parentheses. Variables are defined in Appendix A.

(1) (2) (3) (4) (5) (6)
−TAIL5 −TAIL1 −MES −LRMES −∆CoVaR5 −∆CoVaR1

CRI Bank GW 0.025 0.122* 0.206*** 0.016*** 0.019*** 0.024***
(0.970) (1.723) (5.642) (5.792) (5.899) (4.287)

SIZE Bank -0.604*** -1.286*** -0.705*** -0.016 -0.046*** 0.083***
(-6.266) (-4.461) (-4.772) (-1.621) (-3.389) (4.736)

EQRAT Bank -13.437*** -5.886 -7.241*** -0.935*** 1.497*** 2.536***
(-7.437) (-1.398) (-2.829) (-3.873) (8.352) (9.245)

MTB Bank -0.742*** -1.729*** -0.616*** -0.032*** -0.017** 0.040***
(-9.291) (-8.142) (-6.389) (-4.143) (-2.354) (3.539)

LTA Bank 0.556* -1.757** 1.423*** -0.012 0.311*** 0.414***
(1.659) (-2.254) (3.845) (-0.428) (7.862) (7.401)

LLP Bank 5.671 124.453*** 46.045*** 7.237*** 4.241*** -5.436***
(0.591) (6.283) (4.220) (7.283) (4.178) (-3.253)

DEPO Bank -1.756*** -2.983*** -2.159*** -0.074** -0.114** 0.004
(-4.385) (-2.615) (-4.236) (-2.327) (-2.413) (0.056)

NII Bank 30.590*** 7.882 57.726*** 3.001*** 4.175*** 6.742***
(5.848) (0.690) (9.324) (6.044) (8.008) (8.652)

ROA Bank -68.528*** -51.364*** -108.542*** -5.826*** -5.204*** -10.139***
(-8.889) (-3.025) (-11.841) (-9.167) (-7.622) (-9.327)

OEM Bank 7.333* 28.576*** -24.937*** -1.081*** -3.061*** -3.983***
(1.761) (2.928) (-5.352) (-3.961) (-9.251) (-6.369)

∆CIR Bank -0.275** -0.568* -0.947*** -0.088*** 0.020 0.071**
(-2.030) (-1.776) (-5.381) (-7.375) (1.286) (2.379)

GDP Bank 5.053*** 11.464*** 6.716*** -0.190*** 0.738*** 0.449***
(7.710) (7.368) (7.893) (-2.958) (10.582) (4.591)

∆GDP Bank 0.062*** 0.037** -0.005 -0.004*** -0.006*** -0.010***
(8.175) (1.977) (-0.525) (-5.089) (-8.775) (-9.562)

SIZE Borrower 0.005 -0.053 -0.018 -0.003** -0.001 -0.004
(0.282) (-1.166) (-0.833) (-2.025) (-0.410) (-1.269)

MTB Borrower -0.015 -0.066* -0.036** -0.003** -0.000 -0.003
(-1.117) (-1.895) (-2.006) (-2.003) (-0.108) (-1.282)

CASH Borrower 0.024 0.340 0.299 0.016 0.006 -0.012
(0.152) (0.845) (1.469) (1.309) (0.346) (-0.474)

CURRENT Borrower -0.000 -0.001 0.004 0.001 -0.001 -0.001
(-0.013) (-0.025) (0.160) (0.255) (-0.398) (-0.241)

COVER Borrower 0.000*** 0.001 0.000* 0.000 0.000 0.000
(2.632) (1.233) (1.703) (0.665) (0.355) (0.283)

DEBT Borrower -0.086 -0.342** -0.074 0.001 -0.003 -0.001
(-1.468) (-2.135) (-0.990) (0.141) (-0.350) (-0.053)

DPO Borrower -0.227 0.491 -0.141 0.053 -0.080 -0.089
(-0.516) (0.381) (-0.207) (1.147) (-1.442) (-1.005)

EBITDA Borrower -0.270** -0.556* -0.299** -0.007 -0.017* -0.033*
(-2.370) (-1.833) (-2.176) (-0.871) (-1.679) (-1.849)

INTAN Borrower 0.066 0.225 0.183 0.018* 0.006 0.006
(0.568) (0.787) (1.326) (1.832) (0.452) (0.304)

PPE Borrower 0.007 -0.012 0.133 0.013 -0.003 -0.003
(0.049) (-0.033) (0.747) (1.076) (-0.175) (-0.147)

∆SALES Borrower 0.018 0.054 0.043** 0.001 0.002 0.001
(1.061) (1.307) (2.077) (0.511) (0.688) (0.184)

GDP Borrower -0.013 0.456 -0.154 -0.038** -0.008 -0.012
(-0.060) (0.821) (-0.639) (-2.163) (-0.292) (-0.290)

∆GDP Borrower 0.008* 0.013 0.012* 0.000 -0.000 -0.000
(1.675) (0.958) (1.932) (0.557) (-0.024) (-0.381)

Constant -41.237*** -102.947*** -55.299*** 3.371*** -6.534*** -5.488***
(-5.962) (-6.394) (-6.313) (5.166) (-9.036) (-5.029)

Bank FE Yes Yes Yes Yes Yes Yes
Borrower FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Observations 7,830 7,830 7,830 7,830 7,830 7,830
Adjusted R2 0.944 0.907 0.953 0.951 0.967 0.938
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Table 8: Interaction Tests

The regressions include bank, borrower and year fixed effects (not reported). Standard errors are adjusted for clustering
at the bank-borrower (lending relationship) level. ***, ** and * indicate statistical significance at the 1%, 5%, and 10%
levels, respectively. Robust t-statistics are reported in parentheses. Variables are defined in Appendix A.

(1) (2) (3) (4) (5) (6)
−TAIL5 −TAIL1 −MES −LRMES −∆CoVaR5 −∆CoVaR1

Loan Share -0.015 -0.026 0.012 -0.004*** -0.000 0.000
(-1.389) (-0.907) (0.946) (-4.720) (-0.291) (0.074)

CRI State High -0.074*** -0.215*** -0.102*** -0.009*** -0.002 -0.005
(-3.309) (-3.680) (-3.748) (-4.568) (-0.895) (-1.287)

Loan Share×CRI State High 0.065*** 0.151*** 0.081*** 0.011*** 0.006*** 0.007***
(7.559) (6.966) (7.444) (12.032) (5.406) (4.642)

SIZE Bank -0.591*** -1.205*** -0.562*** -0.005 -0.033** 0.100***
(-6.434) (-4.499) (-4.125) (-0.559) (-2.534) (6.233)

EQRAT Bank -13.662*** -6.518 -7.995*** -0.983*** 1.438*** 2.460***
(-7.526) (-1.545) (-3.077) (-3.986) (8.031) (9.029)

MTB Bank -0.746*** -1.742*** -0.636*** -0.034*** -0.020*** 0.037***
(-9.350) (-8.230) (-6.606) (-4.357) (-2.670) (3.286)

LTA Bank 0.585* -1.688** 1.493*** -0.007 0.318*** 0.421***
(1.746) (-2.157) (3.997) (-0.227) (8.242) (7.592)

LLP Bank 5.544 121.047*** 37.665*** 6.644*** 3.428*** -6.475***
(0.589) (6.249) (3.422) (6.685) (3.387) (-4.001)

DEPO Bank -1.739*** -2.727*** -1.603*** -0.034 -0.061 0.071
(-4.540) (-2.626) (-3.449) (-1.110) (-1.357) (1.130)

NII Bank 30.514*** 8.565 59.674*** 3.173*** 4.386*** 7.008***
(5.817) (0.753) (9.550) (6.445) (8.628) (9.122)

ROA Bank -68.241*** -50.850*** -108.328*** -5.823*** -5.206*** -10.139***
(-8.888) (-3.008) (-11.848) (-9.182) (-7.579) (-9.251)

OEM Bank 7.437* 29.592*** -22.717*** -0.960*** -2.871*** -3.733***
(1.828) (3.100) (-5.067) (-3.501) (-8.552) (-6.050)

∆CIR Bank -0.290** -0.619* -0.991*** -0.090*** 0.017 0.067**
(-2.141) (-1.933) (-5.679) (-7.624) (1.112) (2.236)

GDP Bank 4.958*** 11.237*** 6.526*** -0.199*** 0.727*** 0.435***
(7.586) (7.273) (7.691) (-3.045) (10.311) (4.424)

∆GDP Bank 0.064*** 0.041** -0.001 -0.004*** -0.006*** -0.010***
(8.312) (2.159) (-0.138) (-4.600) (-8.254) (-9.019)

SIZE Borrower 0.001 -0.063 -0.028 -0.004** -0.001 -0.005
(0.037) (-1.373) (-1.235) (-2.269) (-0.653) (-1.489)

MTB Borrower -0.017 -0.072** -0.042** -0.003** -0.001 -0.004
(-1.269) (-2.065) (-2.319) (-2.245) (-0.378) (-1.514)

CASH Borrower 0.034 0.361 0.310 0.018 0.006 -0.011
(0.216) (0.900) (1.523) (1.411) (0.399) (-0.432)

CURRENT Borrower 0.001 0.002 0.007 0.001 -0.001 -0.001
(0.046) (0.043) (0.256) (0.354) (-0.364) (-0.204)

COVER Borrower 0.000*** 0.001 0.000* 0.000 0.000 0.000
(2.761) (1.298) (1.776) (0.771) (0.394) (0.317)

DEBT Borrower -0.087 -0.346** -0.072 0.000 -0.002 -0.000
(-1.506) (-2.171) (-0.961) (0.074) (-0.330) (-0.033)

DPO Borrower -0.206 0.569 -0.043 0.060 -0.072 -0.079
(-0.467) (0.441) (-0.063) (1.277) (-1.312) (-0.892)

EBITDA Borrower -0.267** -0.548* -0.290** -0.005 -0.016 -0.032*
(-2.336) (-1.799) (-2.114) (-0.632) (-1.528) (-1.746)

INTAN Borrower 0.076 0.240 0.185 0.018* 0.006 0.006
(0.658) (0.838) (1.335) (1.884) (0.471) (0.311)

PPE Borrower 0.006 -0.025 0.116 0.013 -0.003 -0.004
(0.043) (-0.067) (0.651) (1.099) (-0.195) (-0.183)

∆SALES Borrower 0.018 0.058 0.048** 0.001 0.002 0.001
(1.108) (1.396) (2.291) (0.696) (0.829) (0.316)

GDP Borrower -0.040 0.463 -0.167 -0.044** -0.016 -0.018
(-0.176) (0.805) (-0.668) (-2.467) (-0.559) (-0.456)

∆GDP Borrower 0.008 0.011 0.011* 0.000 -0.000 -0.000
(1.584) (0.851) (1.795) (0.542) (-0.001) (-0.389)

Constant -40.047*** -101.762*** -55.410*** 3.374*** -6.552*** -5.532***
(-5.777) (-6.255) (-6.286) (5.039) (-8.946) (-5.077)

Loan Share + 0.050*** 0.125*** 0.093*** 0.007*** 0.005*** 0.007***
Loan Share×CRI State High (4.020) (3.810) (5.950) (5.930) (3.450) (3.190)

Bank FE Yes Yes Yes Yes Yes Yes
Borrower FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Observations 7,830 7,830 7,830 7,830 7,830 7,830
Adjusted R2 0.945 0.907 0.953 0.951 0.967 0.938
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Table 9: Alternative Systemic Risk Measures: GARCH–∆CoVaR

This table reports test results of the impact of the banks’ climate risk exposure on their systemic risks estimated using the
bivariate diagonal GARCH model. The regressions include bank, borrower and year fixed effects (not reported). Standard
errors are adjusted for clustering at the bank-borrower (lending relationship) level. ***, ** and * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively. Robust t-statistics are reported in parentheses. Variables are
defined in Appendix A.

(1) (2)
GARCH−∆CoVaR5 GARCH−∆CoVaR1

CRI Bank 0.016** 0.023**
(2.353) (2.353)

SIZE Bank 0.043 0.061
(1.204) (1.204)

EQRAT Bank 0.024 0.034
(0.026) (0.026)

MTB Bank 0.127*** 0.180***
(4.104) (4.104)

LTA Bank 0.128 0.181
(1.309) (1.309)

LLP Bank -0.175 -0.247
(-0.049) (-0.049)

DEPO Bank -0.034 -0.048
(-0.146) (-0.146)

NII Bank -2.457* -3.475*
(-1.652) (-1.652)

ROA Bank -5.875 -8.309
(-1.575) (-1.575)

OEM Bank -8.135*** -11.506***
(-5.759) (-5.759)

∆CIR Bank 0.049 0.069
(0.631) (0.631)

GDP Bank -1.165*** -1.647***
(-4.509) (-4.509)

∆GDP Bank -0.003 -0.005
(-0.824) (-0.824)

SIZE Borrower -0.001 -0.002
(-0.172) (-0.172)

MTB Borrower -0.003 -0.004
(-0.386) (-0.386)

CASH Borrower 0.068 0.096
(1.258) (1.258)

CURRENT Borrower -0.012 -0.018
(-1.349) (-1.349)

COVER Borrower 0.000 0.000
(0.562) (0.562)

DEBT Borrower 0.031 0.044
(1.119) (1.119)

DPO Borrower -0.077 -0.109
(-0.512) (-0.512)

EBITDA Borrower -0.022 -0.031
(-0.561) (-0.561)

INTAN Borrower 0.031 0.044
(0.659) (0.659)

PPE Borrower -0.028 -0.040
(-0.534) (-0.534)

∆SALES Borrower 0.004 0.006
(1.005) (1.005)

GDP Borrower 0.100 0.141
(0.965) (0.965)

∆GDP Borrower -0.001 -0.001
(-0.521) (-0.521)

Constant 12.691*** 17.949***
(4.743) (4.743)

Bank FE Yes Yes
Borrower FE Yes Yes
Year FE Yes Yes
Observations 1,983 1,983
Adjusted R2 0.975 0.975
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Table 10: Weighted Least Squares

This table reports test results of the impact of the banks’ climate risk exposure on their tail and systemic risks using
Weighted Least Squares (WLS) estimation. Panel A reports results using state population of lender banks as the weight
in WLS estimation. Panel B reports results using banks’ market capitalization as the weight in WLS estimation. The
regressions include bank, borrower and year fixed effects (not reported). Standard errors are adjusted for clustering at the
bank-borrower (lending relationship) level. ***, ** and * indicate statistical significance at the 1%, 5%, and 10% levels,
respectively. Robust t-statistics are reported in parentheses. Variables are defined in Appendix A.

Panel A. Weighted Least Squares (by State Population of Lender Banks)

(1) (2) (3) (4) (5) (6)
−TAIL5 −TAIL1 −MES −LRMES −∆CoVaR5 −∆CoVaR1

CRI Bank 0.031** 0.080** 0.087*** 0.025*** 0.004** 0.010***
(2.044) (2.138) (4.495) (15.015) (1.980) (2.853)

Constant -41.787*** -105.039*** -57.162*** 3.650*** -6.829*** -5.787***
(-6.135) (-6.444) (-6.520) (5.790) (-9.546) (-5.365)

Controls Yes Yes Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes Yes Yes
Borrower FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Observations 7,830 7,830 7,830 7,830 7,830 7,830
Adjusted R2 0.945 0.907 0.953 0.953 0.967 0.938

Panel B. Weighted Least Squares (by Bank Market Capitalization)

(1) (2) (3) (4) (5) (6)
−TAIL5 −TAIL1 −MES −LRMES −∆CoVaR5 −∆CoVaR1

CRI Bank 0.029** 0.086** 0.091*** 0.026*** 0.003* 0.008**
(1.968) (2.365) (4.850) (16.021) (1.815) (2.506)

Constant -45.707*** -111.530*** -61.885*** 3.608*** -7.233*** -6.618***
(-6.677) (-6.902) (-7.370) (6.255) (-10.271) (-6.266)

Controls Yes Yes Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes Yes Yes
Borrower FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Observations 7,830 7,830 7,830 7,830 7,830 7,830
Adjusted R2 0.947 0.909 0.954 0.956 0.968 0.938
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Table 11: Standard Errors

This table reports test results of the impact of the banks’ climate risk exposure on their tail and systemic risks. Panel
A reports results with standard errors adjusted for clustering at the borrower state level. Panel B reports results with
heteroskedasticity- and autocorrelation-consistent (HAC) standard errors computed following the Newey and West (1987)
procedure that allows for up to two periods of autocorrelation. The regressions include bank, borrower and year fixed
effects (not reported). ***, ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Robust
t-statistics are reported in parentheses. Variables are defined in Appendix A.

Panel A. Standard Errors Clustered at Borrower State Level

(1) (2) (3) (4) (5) (6)
−TAIL5 −TAIL1 −MES −LRMES −∆CoVaR5 −∆CoVaR1

CRI Bank 0.031* 0.080 0.087*** 0.025*** 0.004* 0.009***
(1.819) (1.405) (3.302) (9.558) (1.936) (2.858)

Constant -41.018*** -103.337*** -56.918*** 3.626*** -6.773*** -5.699***
(-4.750) (-5.230) (-5.097) (5.485) (-5.824) (-3.649)

Controls Yes Yes Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes Yes Yes
Borrower FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Observations 7,830 7,830 7,830 7,830 7,830 7,830
Adjusted R2 0.945 0.907 0.953 0.953 0.967 0.938

Panel B. Newey-West Standard Errors

(1) (2) (3) (4) (5) (6)
−TAIL5 −TAIL1 −MES −LRMES −∆CoVaR5 −∆CoVaR1

CRI Bank 0.031** 0.080** 0.087*** 0.025*** 0.004** 0.009***
(2.219) (2.288) (4.855) (15.855) (1.988) (3.080)

Constant -40.371*** -102.868*** -55.688*** 3.568*** -6.926*** -5.434***
(-6.863) (-6.963) (-7.594) (6.629) (-10.761) (-5.659)

Controls Yes Yes Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes Yes Yes
Borrower FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Observations 7,830 7,830 7,830 7,830 7,830 7,830
Adjusted R2 0.945 0.907 0.953 0.953 0.967 0.938
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Appendix A. Variable Definition

Variable Definition Source

Climate Risk Measures

CRI State State-level climate risk calculated based on the Billion-Dollar

Weather and Climate Disasters data by the National Cen-

ters for Environmental Information (NOAA). It is defined as

the first principal component of six key climate risk indica-

tors: (1) number of death, (2) number of deaths per 100,000

inhabitants, (3) sum of losses in USD at purchasing power

parity (PPP), (4) losses per unit of Gross Domestic Product

(GDP), (5) number of events, and (6) loss per event.

BEA

NOAA

CRI State GW State-level climate risk calculated using the Germanwatch

method. It is defined as the sum of the state’s score in all

four indicating categories: (1) number of deaths, (2)number

of deaths per 100,000 inhabitants, (3) sum of losses in USD

at PPP, (4) losses per unit of GDP, (5) number of events,

and (6) loss per event.

As above

CRI Bank Bank-level climate risk. The sum of a bank’s lending to

individual state as a percentage of its total lending weighted

by CRI State of the specific state for each year.

BEA

NOAA

Dealscan

CRI Bank Adj Bank-level climate risk adjusting for borrower firms’ vulner-

ability to climate change.

As above

CRI Bank Res Bank-level residual climate risk. The residual imputed from

regressing CRI Bank on a set of market-based common risk

factors including market risk, market risk for banking in-

dustry, credit risk, commodity risk, political risk, real estate

risk, and sovereign risk.

As above

CRI Bank GW Bank-level climate risk calculated based on CRI State GW. As above

Dependent Variables

TAIL5 The average return for a bank during the 5% worst return

days for the bank in a year.

CRSP

TAIL1 The average return for a bank during the 1% worst return

days for the bank in a year.

As above

MES Marginal expected shortfall. The average return for a bank

during the 5% worst return days for the banking industry in

a year.

As above

LRMES Long-run marginal expected shortfall during the 2% worst

return days for the banking industry in a year.

As above
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Variable Definition Source

∆CoVaR5 A measure of a bank’s marginal contribution to the risk of

the system, computed as the difference between the value

at risk of the system when the institution’s return is at the

5th percentile and the value at risk of the system when the

institution’ return is at the median.

As above

∆CoVaR1 A measure of a bank’s marginal contribution to the risk of

the system, computed as the difference between the value

at risk of the system when the institution’s return is at the

1st percentile and the value at risk of the system when the

institution’ return is at the median.

As above

Lender Characteristics

SIZE Bank Bank size. Natural logarithm of total assets (at). Compustat

EQRAT Bank Equity ratio. Book value of equity (ceq) divided by total

assets (at).

As above

MTB Bank Market-to-book ratio. Market value of equity

(prccm×cshom) divided by book value of equity (ceq).

As above

LTA Bank Loans-to-assets ratio. Loans net of total allowance for loan

losses (lntal) divided by total assets (at).

As above

LLP Bank Loan loss provisioning. Provisions for loan or asset losses

(pll) divided by total assets (at).

As above

DEPO Bank Deposit ratio. Total deposits (dptc) divided by total assets

(at).

As above

NII Bank Noninterest income ratio. Total noninterest income (tnii)

divided by total assets (at).

As above

ROA Bank Return on assets. Net income (ni) divided by total assets

(at).

As above

OEM Bank Operating expense management. Total current operating ex-

penses (tcoe) divided by total assets (at).

As above

∆CIR Bank Change in cost-to-income ratio. Cost to income ratio is cal-

culate as dividing total current operating expenses (tcoe) by

gross total revenue (tcor).

As above

Borrower Characteristics

SIZE Borrower Firm size. Natural logarithm of total assets (at). Compustat

MTB Borrower Market-to-book ratio. Market value of equity (prcc f×csho)

divided by book value of equity (ceq).

As above

CASH Borrower Cash holding ratio. Cash and short-term investments (che)

divided by total assets (at).

As above

CURRENT Borrower Current ratio. Current assets (aco) divided by current lia-

bilities (lco).

As above
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Variable Definition Source

COVER Borrower Interest coverage. Earnings before interest (ebitda) divided

by total interest expense (xint).

As above

DPO Borrower Dividend payout ratio. The sum of dividends paid to or-

dinary shares (dvc) and dividends paid to preferred shares

(dvp) divided by total assets (at).

As above

EBIDTDA Borrower Earnings before interest, taxes, depreciation, and amortiza-

tion (ebidtda) divided by sales (sale).

As above

INTAN Borrower Intangible assets ratio. Intangible assets (intan) divided by

total assets (at).

As above

PPE Borrower Fixed assets ratio. Property, plant and equipment (ppent)

divided by total assets (at).

As above

∆SALES Borrower Annual growth in sales revenue (sale). As above

State-Level Variables

GDP Bank Natural logarithm of annual gross domestic product (GDP)

per capita of the bank’s state.

BEA

∆GDP Bank Annual growth rate of GDP per capita of the bank’s state. As above

GDP Borrower Natural logarithm of annual GDP per capita of the firm’s

state.

As above

∆GDP Borrower Annual growth rate of GDP per capita of the firm’s state. As above

Instrumental Variables

FOREIGN Foreign loans. Foreign loans (lft) divided by total loans

(lntal).

Compustat

POP Population density. The population of a state in a given year

divided by the land area of the state.

St. Louis Fed

Appendix B. Industry Classification by Climate Change Vulnerability

High Medium Low

Coal Agriculture Real estate
Oil and gas Automotive Telecommunication carriers
Shipping and aviation Electronics Rail systems
Construction (incl. cement) Retail stores (incl. warehouses) Renewable power generation
Freight transport Metal mining Natural gas extraction
Livestock Iron and steel production
Aluminium production

Source: ING (2020)
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Appendix C. Common Risk Factors

Risk Factor Description Source

Interest rate risk Percentage changes in the market value of long-

term assets. The factor is based on market

prices of 10–year government bonds.

Datastream

Credit risk Changes in the default premium between BAA–

and AAA–rated corporate bonds. The factor is

based on time series maintained by Moody’s.

Datastream

Commodity risk Percentage changes in the S&P GSCI Total Re-

turn Index.

Datastream

Foreign exchange risk Percentage changes in the trade-weighted cur-

rency baskets. The factor measures the cur-

rency value with respect to the currency values

of the major trade partners.

Bank of England

Market risk Percentage changes in the market value of S&P

500.

Datastream

Market risk (banking industry) Percentage changes in the market value of the

banking sector stock market portfolios.

Datastream

Political risk Percentage changes in gold price against U.S.

dollars.

Bank of England

Real estate risk Percentage changes in the market value of the

REIT investments.

Datastream

Sovereign risk Changes in the difference of the (mean) of yields

on the 10–year government bonds (Greece, Por-

tugal, Spain, Italy) and 10–year German Gov-

ernment bonds.

Datastream

VIX Chicago Board Options Exchange volatility in-

dex. The index measures market expectations

of short-term volatility based on S&P 500 stock-

index option prices.

Datastream
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2 INTEGRATING CLIMATE RISK INTO AN INSURER’S STRATEGIC ASSET ALLOCATION

Executive Summary

•  We use a proprietary framework that incorporates “Climate Value at Risk” (Climate VaR) and an equivalent proprietary 
sovereign bonds model to estimate the potential impact of climate change on the present value of assets and securities, which 
we then aggregate up to the benchmark index level to use as inputs into the strategic asset allocation (SAA) process.

•  Under a 2°C warming scenario, we subject the optimized asset allocations of a typical UK general insurer and Continental 
European life insurer to these climate-related adjustments to estimated returns: these ex-post adjustments lower the portfolios’ 
estimated returns, revealing them to be sub-optimal.

•  We run an optimization for each insurer that integrates climate-related effects into the SAA by subjecting the portfolio 
constituents to climate-cost adjustments ex ante.

 -  This “Climate SAA” process “recovers” a large portion of the estimated return “lost” to the ex-post adjustment for climate 
adjustments.

 -  The process also lowers the solvency capital requirements (SCR) of the portfolios on the efficient frontier, as it results in 
allocations away from equities and extended fixed income and toward core fixed income.

•  Climate SAA also lowers the financed emissions of the portfolios; introducing financed emissions as a constraint in the Climate 
SAA optimization can lower them even further, with minimal effect on estimated return and volatility (but with some sacrifice of 
solvency-capital efficiency).

Traditional ESG analyses have tended to focus on fundamental or “bottom-up” factors. That means climate considerations are generally 
addressed at the sector and company level only after a portfolio’s strategic asset allocation (SAA) has been set. This leaves climate risk 
exposure unrecognized and unmanaged at the SAA level.

At Neuberger Berman, we believe that this is a significant decision, given that SAA can drive up to 90% of the variation in portfolio 
returns over time. We believe that fully integrating climate considerations into SAA can identify portfolio-level return potential that is 
missed when climate-related impact is considered only afterwards, at the issuer level. That belief was reinforced when we applied our 
climate-related adjustments to the expected returns of our universes of corporate bonds and equities, and found very wide dispersion at 
the regional, asset-class and sector levels. This suggests to us an abundant availability of top-down “climate asset-allocation alpha.”

Neuberger Berman developed its proprietary “Climate SAA” model to test this hypothesis, and set out its findings in its 2022 paper, 
Integrating Climate Risk into Strategic Asset Allocation. We found that, when we adjusted asset-class expected returns for climate-
related effects after conducting a standard SAA optimization, it lowered the efficient frontier relative to the standard SAA output. 
When we adjusted asset-class estimated returns before conducting the optimization, however, we found that it “recovered” some of 
that lost estimated return.

In other words, integrating climate-related effects ex ante into the SAA optimization process achieved higher levels of estimated return 
with no additional portfolio volatility, relative to imposing the effects after a standard SAA.1

1  Charles Nguyen, Tully Cheng, et al, Integrating Climate Risk into Strategic Asset Allocation (May 2022), at https://www.nb.com/en/gb/insights/integrating-
climate-risk-into-strategic-asset-allocation.

https://www.nb.com/en/gb/insights/integrating-climate-risk-into-strategic-asset-allocation
https://www.nb.com/en/gb/insights/integrating-climate-risk-into-strategic-asset-allocation
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Climate VaR 

How do we estimate climate effects and integrate them into an SAA? 

We use a “Climate Value at Risk” (Climate VaR) model to estimate the impact of climate change on most equity and corporate bond 
securities. Climate VaR is defined as the present value of aggregated future policy risk costs, technology opportunity profits, and 
extreme weather event costs and profits, under a given warming scenario, expressed as a percentage of a security or portfolio’s market 
value. This initial analytical step can be useful in itself, in that it reveals where climate-related risks and opportunities may lie in an 
existing portfolio or asset allocation. To get the most out of the information, however, we think it is best to bring it into the investment 
process before the risks are allowed into the portfolio.

To that end, we use a proprietary methodology to convert this present value of costs into a change in return expectation, and then 
aggregate these security-level Climate VaR return adjustments, using the relevant index’s security weights, to create a climate risk-
adjusted, index-level estimated return to use in the Climate SAA process. 

In this paper, we aim to apply Climate SAA to portfolios typical of insurance investors. European insurance portfolios tend to have 
meaningful allocations to sovereign bonds, requiring us to apply an “apples-to-apples” equivalent of Climate VaR to those assets. Our 
estimates of climate impact on sovereign bonds are calculated by taking the same future policy risks, technology opportunities and 
extreme weather events that go into the Climate VaR model, and applying them to macro-financial factors such as GDP growth, debt-
to-GDP ratios and inflation.2 

As in our previous work, to test the benefit of integrating these climate-related effects into the SAA process, we first apply them 
ex-post to the estimated returns of illustrative UK and Continental European insurance portfolios, before re-optimizing them with the 
climate effects applied ex ante. We can then quantify how much of the “lost” estimated return has been “recovered” by this Climate 
SAA process. 

Climate SAA for a Typical UK General Insurer

In the Appendix, we describe a typical UK insurer’s balance sheet and asset allocation, based on what we see in the current market.

While this asset allocation reflects what is typical for the sector, it is not an optimized portfolio. Therefore, to provide a more robust 
starting point, we optimize for estimated return and surplus volatility (reflecting the illustrative insurer’s asset-liability matching), with 
constraints based on the illustrative insurer’s estimated solvency capital requirements (SCR), and on asset weights that would be 
reasonable for such an insurer to consider. 

This provides us with an efficient frontier from which we can select the portfolio that has similar surplus volatility to that of our 
illustrative UK insurer, around 3%. That portfolio has an estimated return of 5.11%. 

We then take the standard approach to climate-related costs: applying Climate VaR and its equivalents to the constituents of the 
portfolio, assuming a 2°C warming scenario, after the optimization is complete. For a surplus volatility level around 3%, the estimated 
return falls from 5.11% to 4.94%, a loss of 17 basis points. The efficient frontiers for these optimizations are shown light and dark blue 
in figure 1. 

2  Our illustrative Continental European life insurer asset allocations include private equity and hedge funds. As we are still developing a Climate VaR 
equivalent for these asset classes, in this paper their estimated returns remain unadjusted for climate effects.
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Source: Bloomberg, MSCI, JP Morgan, S&P Global, Neuberger Berman. Data as of April 2023. Indices used: Bloomberg-Barclays Indices for Government/
Agency Debt, Corporate Bonds, and US Equities; MSCI Indices for UK Equity and Global Equity; JPM EMBI for Emerging Markets Sovereign Debt; JPM CEMBI 
for Emerging Markets Corporate Bonds; MSCI and S&P Global Indices for Real Estate. Past performance is no guarantee of future results. Please 
note that estimated returns data is based on NB’s capital markets assumptions and are provided for information purposes only. There is no guarantee that 
estimated returns will be realized or achieved nor that an investment strategy will be successful, and may be significantly different than shown here. Investors 
should keep in mind that the securities markets are volatile and unpredictable. There are no guarantees that historical performance of an investment, 
portfolio, or asset class will have a direct correlation with its future performance. Net returns will be lower. 
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Climate SAA, Ex-Ante Climate AdjustmentStandard SAA, Ex-Post Climate AdjustmentStandard SAA, No Climate Adjustment
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Portfolios Selected for 
~3% Surplus Volatility

Ex-post climate adjustment 
"loses" ~17bps

Ex-ante climate adjustment 
"recovers" ~21bps

FIGURE 1. CLIMATE EFFECTS CAN BE MITIGATED BY INTEGRATING THEM INTO AN SAA 
Standard and Climate SAA efficient frontiers for a typical UK general insurer

How much of this “lost” estimated return can be “recovered” by adjusting for climate-related effects before optimizing the portfolio, 
rather than afterwards? That is shown by the gray efficient frontier in figure 1. The selected Climate SAA portfolio, with the same level 
of surplus volatility as the Standard portfolios, has an estimated return of 5.15%. Climate SAA has recovered 21 basis points, more 
than the 17 basis points lost when we made ex-post adjustments for climate-related effects.

This recovered loss represents asset-allocation alpha. But it also represents something even more interesting: “climate asset-allocation 
alpha.” To understand what we mean by that, let’s take a closer look at how this Climate SAA process changes both the portfolio’s 
asset allocation and its general risk profile, in figure 2. This shows the profiles of the Standard and Climate portfolios selected from the 
efficient frontiers for 2.9% surplus volatility.  
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Source: Bloomberg, MSCI, JP Morgan, S&P Global, Neuberger Berman. Data as of April 2023. Indices used: Bloomberg-Barclays Indices for Government/
Agency Debt, Corporate Bonds, and US Equities; MSCI Indices for UK Equity and Global Equity; JPM EMBI for Emerging Markets Sovereign Debt; JPM CEMBI 
for Emerging Markets Corporate Bonds; MSCI and S&P Global Indices for Real Estate. Carbon Intensity and Carbon Footprint data are calculated on Scope 1 
and 2 emissions. Past performance is no guarantee of future results. Please note that estimated returns data is based on NB’s capital markets 
assumptions and are provided for information purposes only. There is no guarantee that estimated returns will be realized or achieved nor that an investment 
strategy will be successful, and may be significantly different than shown here. Investors should keep in mind that the securities markets are volatile and 
unpredictable. There are no guarantees that historical performance of an investment, portfolio, or asset class will have a direct correlation with its future 
performance. Net returns will be lower.

FIGURE 2. INTEGRATING CLIMATE EFFECTS INTO AN SAA CAN PROFOUNDLY CHANGE A PORTFOLIO’S RETURN-RISK PROFILE
Effect of ex-ante Climate SAA at asset class level, and on portfolio risk profile

 
Standard SAA, Ex-Post 

Climate Adj. Climate SAA ∆ (Climate – Standard)

Sterling Gov/Agency 15.9% 16.4% 0.5%

Sterling IG Corp 32.5% 31.5% -1.0%

Euro Gov/Agency 8.5% 9.0% 0.5%

Euro IG Corp 13.1% 16.6% 3.5%

US Gov/Agency 8.5% 8.7% 0.2%

US IG Corp 6.5% 6.3% -0.2%

Core Fixed Income 85.1% 88.5% 3.4%

HY BB 5.0% 5.0% 0.0%

EMD 1.5% 0.0% -1.5%

Extended Fixed Income 6.5% 5.0% -1.5%

Real Estate 2.0% 2.0% 0.0%

UK Equity 3.8% 2.6% -1.1%

US Equity 0.8% 0.5% -0.2%

Global Equity 1.9% 1.3% -0.6%

Equity & Alternatives 8.4% 6.5% -1.9%

Expected Return 4.94% 5.15% 0.21%

Surplus Volatility 2.9% 2.9% 0.0%

Asset Volatility 3.0% 3.0% 0.0%

Asset Duration 2.0 2.0 0.0

Surplus Duration 0.4 0.4 0.0

Carbon Intensity 96 61 -35

Carbon Footprint 52 31 -21

Total SCR 6.1% 5.4% -0.7%

Asset re-allocation effect of ex-ante Climate SAA at industry sector level

Sterling Core FI Euro Core FI US Core FI Extended FI Equity

Basic Materials 0.0% -1.3% -1.2% -2.4% -3.7%

Communications -1.3% -2.6% -2.8% 9.4% 3.1%

Consumer, Cyclical -6.6% -4.4% -4.2% -22.1% 0.0%

Consumer, Non-cyclical -5.6% -0.5% -2.8% 1.0% 15.8%

Energy -0.7% -1.5% -3.2% -1.4% -5.3%

Financial 18.2% 17.0% 24.4% 3.6% -9.0%

Industrial -2.1% -2.6% -3.9% -0.1% -3.4%

Technology 0.0% -0.9% -3.7% 0.2% 1.6%

Utilities -2.0% -3.3% -2.7% 11.8% 0.9%
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The first thing to note is the improvement in the portfolio’s Scope 1 and 2 carbon intensity and carbon footprint. Carbon intensity is 
defined as the number of tons of CO2 equivalents emitted for every million dollars of each constituent company’s revenue. The carbon 
footprint of the portfolio is the absolute apportioned emissions financed by the portfolio itself—that is, the emissions attributed to the 
portfolio based on its ownership share of an emitter’s total invested capital, further normalized by the investment value. 

This is an intuitive result, as the optimizer now penalizes the assets whose estimated returns are most affected by climate-related 
costs, and those assets tend to be issued by entities with relatively large carbon emissions.

More strikingly and counterintuitively, the Climate SAA process reduces the portfolio’s solvency capital requirement (SCR) even as it 
adds 21 basis points of estimated return. 

It might be assumed that taking allocation away from equities, high yield bonds and emerging markets debt and giving it to core 
fixed income, especially EUR-denominated investment grade bonds, would reduce estimated return, not raise it. The fact that it raises 
estimated return reflects the extent to which the traditionally higher-return asset classes are hit by bigger adjustments for climate-
related costs. For example, as we can see in the table in the Appendix, even short-duration US high yield bonds receive a 163-basis-
point-per-annum penalty, and UK equities get hit by 77 basis points per annum. With Climate SAA, all of these adjustments are fed 
into the optimizer ex ante, in a way they were not with the Standard efficient frontier.  

Finally, it is also worth noting that, like any SAA, the Climate SAA process provides no insight into the additional benefits that can be 
achieved with security selection, below the levels of asset classes, regions and sectors. At Neuberger Berman, we believe that climate 
risk-awareness and sustainable business practices tend to be rewarded by the market, and therefore can and should inform bottom-
up security selection. In our view, ESG-integrated, sustainable and impact investment strategies that build these factors into their 
processes or objectives have the potential to squeeze further return from each unit of portfolio risk. 

Climate SAA for a Typical Continental European Life Insurer

With our Continental European life insurer, we again optimize an efficient frontier with constraints related to the illustrative profile 
shown in the Appendix. When we select the portfolio that has similar surplus volatility to that of our illustrative asset allocation, 
around 4%, we find an estimated return of 3.79%. 

We apply Climate VaR and its equivalents to the constituents of this efficient frontier and the selected portfolio to find the dark-blue 
efficient frontier and portfolio shown in figure 3. For a surplus volatility level around 4%, the estimated return falls from 3.79% to 
3.59%, a loss of 20 basis points. 

A Climate SAA generates the gray efficient frontier. The selected Climate SAA portfolio, with the same level of surplus volatility as 
the Standard portfolios, has an estimated return of 3.75%, recovering 16 basis points of the total 20 basis points lost by the ex-post 
adjustment for climate-related effects.
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Source: Bloomberg, MSCI, JP Morgan, S&P Global, Cambridge Associates, HFRI, Neuberger Berman. Data as of April 2023. Indices used: Bloomberg-Barclays 
Indices for Government/Agency Debt, Corporate Bonds, US Equities and Europe Equities; JPM EMBI for Emerging Markets Sovereign Debt; JPM CEMBI for 
Emerging Markets Corporate Bonds; Cambridge Associates Indices for Private Equity; HFRI Indices for Hedge Funds; MSCI and S&P Global Indices for Real 
Estate. Past performance is no guarantee of future results. Please note that estimated returns data is based on NB’s capital markets assumptions and 
are provided for information purposes only. There is no guarantee that estimated returns will be realized or achieved nor that an investment strategy will be 
successful, and may be significantly different than shown here. Investors should keep in mind that the securities markets are volatile and unpredictable. There 
are no guarantees that historical performance of an investment, portfolio, or asset class will have a direct correlation with its future performance. Net returns 
will be lower. 

Portfolios Selected for 
~4% Surplus Volatility

Ex-post climate adjustment 
"loses" ~20bps

Ex-ante climate 
adjustment 
"recovers" 
~16bps
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FIGURE 3. INTEGRATING CLIMATE EFFECTS INTO AN SAA CAN ENHANCE ESTIMATED RETURN 
Standard and Climate SAA efficient frontiers for a typical Continental European life insurer

Figure 4 confirms, once again, that the Climate SAA process can substantially reduce an insurance portfolio’s carbon intensity and 
carbon footprint while simultaneously lowering its SCR and raising estimated return, due to the ex-ante penalization of traditionally 
higher-return assets. 
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FIGURE 4. INTEGRATING CLIMATE COSTS INTO AN SAA CAN IMPROVE SOLVENCY CAPITAL EFFICIENCY
Effect of ex-ante Climate SAA at asset class level, and on portfolio risk profile

 
Standard SAA, Ex-Post 

Climate Adj. Climate SAA ∆ (Climate – Standard)

Euro Gov/Agency 20.7% 21.0%  0.3%

Euro IG Corp 60.4% 61.1%  0.6%

US IG Corp 0.0% 0.0%  0.0%

Core Fixed Income 81.2% 82.1%  0.9%

HY BB&B 5.0% 5.0%  0.0%

EMD 5.0% 4.5%  -0.5%

Extended Fixed Income 10.0% 9.5%  -0.5%

US Equity 0.0% 0.0%  0.0%

Europe Equity 5.9% 5.5%  -0.4%

Private Equity 0.5% 0.5%  0.0%

Hedge Funds 0.4% 0.4%  0.0%

Real Estate 2.0% 2.0%  0.0%

Equity & Alternatives 8.8% 8.5%  -0.4%

Expected Return 3.59% 3.75%  0.16%

Surplus Volatility 4.0% 4.0%  0.0%

Asset Volatility 7.1% 7.1%  0.0%

Asset Duration 9.0 9.0  0.0

Surplus Duration -0.9 -0.9  0.0

Carbon Intensity 170 106  -64

Carbon Footprint 111 67  -43

Total SCR 13.6% 13.4%  -0.2%

Asset re-allocation effect of ex-ante Climate SAA at industry sector level

 Euro Core FI US Core FI Extended FI Equity

Basic Materials -0.4% -0.1% -3.3% -3.1%

Communications 6.2% 2.1% 4.2% 2.2%

Consumer, Cyclical -0.7% 0.3% -5.2 -5.2%

Consumer, Non-cyclical -0.2% -1.0% 2.7% 15.9%

Energy 0.4% -1.8% 1.5% -3.5%

Financial 4.6% 0.3% 9.0% -0.6%

Industrial -1.4% -0.3% -6.5% -6.4%

Technology 0.2% 0.1% 1.0% 2.8%

Utilities -8.7% 0.4% -3.5% -2.2%

Source: Bloomberg, MSCI, JP Morgan, S&P Global, Cambridge Associates, HFRI, Neuberger Berman. Data as of April 2023. Indices used: Bloomberg-Barclays 
Indices for Government/Agency Debt, Corporate Bonds, US Equities and Europe Equities; JPM EMBI for Emerging Markets Sovereign Debt; JPM CEMBI for 
Emerging Markets Corporate Bonds; Cambridge Associates Indices for Private Equity; HFRI Indices for Hedge Funds; MSCI and S&P Global Indices for Real 
Estate. Carbon Intensity and Carbon Footprint data are calculated on Scope 1 and 2 emissions. Past performance is no guarantee of future results. 
Please note that estimated returns data is based on NB’s capital markets assumptions and are provided for information purposes only. There is no guarantee 
that estimated returns will be realized or achieved nor that an investment strategy will be successful, and may be significantly different than shown here. 
Investors should keep in mind that the securities markets are volatile and unpredictable. There are no guarantees that historical performance of an 
investment, portfolio, or asset class will have a direct correlation with its future performance. Net returns will be lower. 
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Integrating Financed Emissions into the SAA Process

In both the UK and Continental European insurer case studies, we found that the Climate SAA process substantially reduced carbon 
intensity and carbon footprint while simultaneously lowering SCR and raising estimated return. 

We think this is notable, especially in light of the recent approval, by the European Parliament’s Committee on Economic and Monetary 
Affairs, of draft amendments to Solvency II that would require insurers to publish quantifiable plans for achieving net-zero portfolio 
emissions by 2050, as well as the processes by which they monitor and address carbon-transition risks.3 

The Climate SAA process reduces financed emissions because they are important inputs into the Climate VaR model and its 
equivalents that are used to calculate estimated returns. All other things being equal, the Climate SAA therefore prefers assets with 
lower financed emissions. Investors can choose to “dial-up” the effect of financed emissions, however, by adding them as constraints 
to the Climate SAA.4 

As a reminder, carbon intensity is defined as the number of tons of CO2 equivalents emitted for every million dollars of each 
constituent company’s revenue. The carbon footprint of the portfolio is the absolute apportioned emissions financed by the portfolio 
itself—that is, the emissions attributed to the portfolio based on its ownership share of an emitter’s total invested capital, further 
normalized by the investment value. 

Like the impact of Climate VaR on estimated returns, and for much the same reason, carbon intensity and carbon footprint vary widely 
at the asset-class level (figure 5). In general, fixed income assets generate more financed emissions than equities, due to their lower 
sector exposures in technology and higher exposures in utilities and energy; and EUR fixed income generates fewer financed emissions 
than USD fixed income due to its higher exposure to financials.

FIGURE 5. FINANCED EMISSIONS VARY WIDELY AT BOTH ASSET CLASS AND SECTOR LEVEL
Carbon intensity, tons of CO2 equivalents per million dollars of issuer revenue, by asset class
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3  https://emeeting.europarl.europa.eu/emeeting/committee/en/agenda/202307/ECON?meeting=ECON-2023-0718_1&session=07-18-08-00;  
https://www.europarl.europa.eu/cmsdata/273462/RCVs_18%20July%202023.pdf 

4  While we have used them for simple illustration in this paper, we regard metrics such as carbon intensity and carbon footprint as somewhat blunt 
instruments for assessing issuer and portfolio emissions, and particularly future emissions. As an example of some of the issues they present, note how, in 
figure 5, while carbon intensity and carbon footprint are generally positive correlated, EUR BBB corporate bonds and high yield have a higher carbon 
footprint than their US counterparts, despite exhibiting lower carbon intensity; and the same is the case with European versus US equities. This apparent 
anomaly occurs because the macroeconomic environment can effect these metrics via both their numerators (carbon output) and, especially, their 
denominators (revenue or enterprise value), without their being a real change in a company or sector’s overall emissions profile. That is one reason why we 
regard metrics such as these as necessary but not sufficient to determine net-zero alignment, a subject we address in more detail in a recent paper, which 
also sets out a proprietary Net Zero Alignment Indicator, designed to assign a net-zero alignment score and status to security issuers based on what we 
believe to be a richer, more forward-looking set of data and metrics. See Jonathan Bailey, Sarah Peasey and Laura Kunstler-Brooks, Net-Zero Alignment: 
Beyond the Numbers (July 2023), at https://www.nb.com/en/link?type=article&name=whitepaper-net-zero-alignment-beyond-the-numbers.

https://emeeting.europarl.europa.eu/emeeting/committee/en/agenda/202307/ECON?meeting=ECON-2023-0718_1&session=07-18-08-00; 
https://www.europarl.europa.eu/cmsdata/273462/RCVs_18%20July%202023.pdf
https://emeeting.europarl.europa.eu/emeeting/committee/en/agenda/202307/ECON?meeting=ECON-2023-0718_1&session=07-18-08-00; 
https://www.europarl.europa.eu/cmsdata/273462/RCVs_18%20July%202023.pdf
https://www.nb.com/en/link?type=article&name=whitepaper-net-zero-alignment-beyond-the-numbers
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Carbon intensity, tons of CO2 equivalents per million dollars of issuer revenue, by sector

Euro Corp 
A/above

Euro Corp 
BBB

US Corp A/
above

US Corp 
BBB Euro HY US HY

EMD 
Corp

US 
Equity 

Europe 
Equity

Basic Materials 568 441 713 535 600 677 1136 631 461

Communications 47 29 25 31 25 27 73 18 18

Consumer, Cyclical 25 112 42 76 167 273 387 56 22

Consumer,  
Non-cyclical

26 44 25 31 45 53 112 24 29

Energy 291 337 369 735 207 691 661 447 273

Financial 4 28 10 30 23 46 13 51 8

Industrial 46 788 192 203 294 194 615 132 206

Technology 9 22 23 23 44 39 152 20 18

Utilities 389 589 2497 1787 1030 3121 3805 2227 627

 Index 27 201 287 266 200 321 601 143 116

Carbon footprint, tons of CO2 equivalents per million dollars of portfolio investment, by asset class
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Carbon footprint, tons of CO2 equivalents per million dollars of portfolio investment, by sector 

 Euro Corp 
A/above

Euro 
Corp BBB

US Corp 
A/above

US Corp 
BBB Euro HY US HY

EMD 
Corp US Equity

Europe 
Equity

Basic Materials 202 663 171 353 1478 579 698 191 325

Communications 19 14 7 12 12 11 33 5 8

Consumer, Cyclical 68 107 26 31 114 77 136 23 14

Consumer,  
Non-cyclical

9 22 11 19 20 34 53 9 9

Energy 271 356 242 266 109 289 314 256 291

Financial 1 2 2 3 2 11 4 13 1

Industrial 22 699 44 72 190 94 264 34 132

Technology 2 11 4 7 21 17 12 3 4

Utilities 12 360 207 278 381 1507 711 375 352

 Index 26 152 37 77 136 134 209 40 77

Source: Bloomberg, MSCI, JP Morgan, S&P Global, Neuberger Berman. Data as of April 2023. Indices used: Bloomberg-Barclays Indices for Government/
Agency Debt, Corporate Bonds, US Equities and Europe Equities; JPM CEMBI for Emerging Markets Corporate Bonds. Carbon Intensity and Carbon Footprint 
data are calculated on Scope 1 and 2 emissions.

This variation, both among asset classes and within them, makes it possible to set the constraints on financed emissions with a wide 
range, which should help to achieve a meaningful additional reduction in carbon intensity and footprint with minimal impairment of 
estimated risk-adjusted return. That is indeed what we find, as shown for the Continental European life insurer portfolio in figure 6.

It is also worth noting that this Climate SAA lowers financed emissions despite raising the allocation to core fixed income, which is 
made up of asset classes that have generally higher financed emissions. This result is possible due to the wide variation in financed 
emissions within these asset classes, as well as among them, which, once again, give us abundant opportunity to realize asset-
allocation alpha.
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 Standard Climate

Climate 
with Carbon 

Footprint 
Constraints 

(CF)

Climate 
with Carbon 

Intensity 
Constraints 

(CI)
∆ 

(CF – Climate)
∆ 

(CI – Climate)

Euro Gov/Agency 20.7% 21.0% 21.3% 20.9% 0.3% -0.1%

Euro IG Corp 60.4% 61.1% 61.8% 60.8% 0.8% -0.2%

US IG Corp 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Core Fixed Income 81.2% 82.1% 83.1% 81.7% 1.1% -0.3%

HY BB&B 5.0% 5.0% 5.0% 5.0% 0.0% 0.0%

EMD 5.0% 4.5% 0.0% 0.0% -4.5% -4.5%

Extended Fixed Income 10.0% 9.5% 5.0% 5.0% -4.5% -4.5%

US Equity 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Europe Equity 5.9% 5.5% 8.9% 10.3% 3.4% 4.8%

Private Equity 0.5% 0.5% 0.5% 0.5% 0.0% 0.0%

Hedge Funds 0.4% 0.4% 0.4% 0.4% 0.0% 0.0%

Real Estate 2.0% 2.0% 2.0% 2.0% 0.0% 0.0%

Equity & Alternatives 8.8% 8.5% 11.9% 13.3% 3.4% 4.8%

Expected Return 3.59% 3.75% 3.74% 3.73% -0.01% -0.02%

Surplus Volatility 4.0% 4.0% 4.0% 4.0% 0.0% 0.0%

Asset Volatility 7.1% 7.1% 7.2% 7.2% 0.1% 0.1%

Asset Duration 9.0 9.0 9.0 9.0 0.0 0.0

Surplus Duration -0.9 -0.9 -0.9 -0.9 0.0 0.0

Carbon Intensity 170 106 78 72 -28 -34

Carbon Footprint 111 67 52 54 -15 -13

Total SCR 13.6% 13.4% 13.7% 13.8% 0.3% 0.4%

Source: Bloomberg, MSCI, JP Morgan, S&P Global, Cambridge Associates, HFRI, Neuberger Berman. Data as of April 2023. Indices used: Bloomberg-Barclays 
Indices for Government/Agency Debt, Corporate Bonds, US Equities and Europe Equities; JPM EMBI for Emerging Markets Sovereign Debt; JPM CEMBI for 
Emerging Markets Corporate Bonds; Cambridge Associates Indices for Private Equity; HFRI Indices for Hedge Funds; MSCI and S&P Global Indices for Real 
Estate. Carbon Intensity and Carbon Footprint data are calculated on Scope 1 and 2 emissions. Past performance is no guarantee of future results. 
Please note that estimated returns data is based on NB’s capital markets assumptions and are provided for information purposes only. There is no guarantee 
that estimated returns will be realized or achieved nor that an investment strategy will be successful, and may be significantly different than shown here. 
Investors should keep in mind that the securities markets are volatile and unpredictable. There are no guarantees that historical performance of an 
investment, portfolio, or asset class will have a direct correlation with its future performance. Net returns will be lower. 

FIGURE 6. FINANCED EMISSIONS CAN BE REDUCED BY MORE THAN 50% WITHOUT SUBSTANTIAL IMPAIRMENT OF ESTIMATED 
RETURN 
Effect of ex-ante Climate SAA on a Continental European life insurer portfolio, with and without financed emissions constraints

As we have already seen, a Climate SAA already reduces financed emissions by almost 40%. Adding carbon intensity and carbon 
footprint as constraints in the Climate SAA reduces them by another 20 – 30%. 

The impact on estimated volatility and return is minimal, although there is a small sacrifice in terms of SCR efficiency—this is because 
the major change in asset allocation is to remove emerging markets debt (which generates high financed emissions but a relatively 
low SCR) and reallocate most of the proceeds to European equities (which generates low financed emissions despite its relatively high 
Climate VaR, but has a higher SCR). 
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Conclusion: Lower Climate Costs, Lower Solvency Costs, Higher Estimated Returns

Investors are increasingly cognizant of the potential impact that climate change, and the measures imposed to mitigate climate 
change, might have on the value of their portfolios. However, efforts to assess and address these costs and opportunities happen 
almost exclusively during the bottom-up, issuer-level stages of the investment process. As such, climate-related adjustments to 
valuations and estimated returns are imposed upon portfolios whose asset-class, region and sector allocations have already been 
determined.

We believe that integrating climate-related costs into SAA processes—before asset allocation is determined—can “recover” some 
of the estimated return that gets lost when climate-related adjustments are imposed on existing portfolios. The wide dispersion of 
climate impact we find between asset classes, regions and sectors provides abundant opportunity to optimize between risk-adjusted 
estimated return and climate effects.

Moreover, in the context of insurance portfolios, we find that integrating climate-related costs into SAA processes can not only raise 
estimated return with no additional volatility, but also lower a portfolio’s SCR, thereby enhancing solvency capital efficiency.

Finally, we think it is important to underline the flexibility and adaptability of Climate SAA. An investor can introduce or “dial up” the 
effect of any risk or parameter it chooses by adding it as a constraint to the optimization. As governments, regulators, corporations 
and investors increasingly adopt Net-Zero and other emissions-reduction targets, the flexibility Climate SAA has to take account of 
these parameters could become a major advantage. 
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PROFILES OF AN ILLUSTRATIVE UK GENERAL INSURER AND CONTINENTAL EUROPEAN LIFE INSURER
Illustrative UK General Insurer 

Original Duration Scaled to Assets

 Assets Liabilities Liabilities Surplus 

Market Value (GBP Million) 1,000 623 623 377

Duration (years) 1.7 2.3 1.4 0.3

DV01 (GBP Million) 17 14 14 3

Balance Sheet

Illustrative Liability Cash Flows
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Source: Bloomberg, MSCI, JP Morgan, S&P Global, Neuberger Berman. Data as of April 2023. Indices used: Bloomberg-Barclays Indices for Government/
Agency Debt, Corporate Bonds, and US Equities; MSCI Indices for UK Equity and Global Equity; JPM EMBI for Emerging Markets Sovereign Debt; JPM CEMBI 
for Emerging Markets Corporate Bonds; MSCI and S&P Global Indices for Real Estate. Carbon Intensity and Carbon Footprint data are calculated on Scope 1 
and 2 emissions. Past performance is no guarantee of future results. Please note that estimated returns data is based on NB’s capital markets 
assumptions and are provided for information purposes only. There is no guarantee that estimated returns will be realized or achieved nor that an investment 
strategy will be successful, and may be significantly different than shown here. Investors should keep in mind that the securities markets are volatile and 
unpredictable. There are no guarantees that historical performance of an investment, portfolio, or asset class will have a direct correlation with its future 
performance. Net returns will be lower.

Asset Allocation, with Estimated Reduction in Annualized Return from Climate Adjustments

Asset Class  Allocation (%) Return Reduction (bps) Portfolio Return Reduction (bps)

Sterling Cash 7 NA NA

Sterling Gilt 1-3 yrs 13 0 0

Sterling IG Corp 1-3 yrs 23 -12 -3

Euro Treasury 1-3 yrs 6 0 0

Euro IG Corp 1-3 yrs 11 -47 -5

Euro Mortgage Loans 6 NA NA

US Treasury 1-3 yrs 6 -1 0

US IG Corp 1-3 yrs 11 -14 -2

Sterling HY BB&B 1-3 yrs 2 -56 -1

Euro HY BB&B 1-3 yrs 1 -113 -1

US HY BB&B 1-3 yrs 1 -163 -2

Europe Real Estate 2 NA NA

UK Equity 5 -77 -4

US Equity 2 -18 0

Global Equity 3 -25 -1

Total 100 NA -19

Original Duration Scaled to Assets

 Assets Liabilities Liabilities Surplus 

Market Value (EUR Million) 1,200 1,000 1,000 200

Duration (years) 8.9 11.9 9.9 -1.1

Dollar Duration (EUR Million) 106 119 119 -13

Illustrative Continental European Life Insurer  
Balance Sheet
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Illustrative Liability Cash Flows
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Asset Allocation, with Estimated Reduction in Annualized Return from Climate Costs

Asset Class  Allocation (%) Return Reduction (bps) Portfolio Return Reduction (bps)

Euro Cash 3 NA NA

Euro Gov 1-10 Yr 2 1 0

Euro Gov 10+ Yr 21 3 1

Covered Bonds 12 NA NA

Euro Corp A/above 1-10 yrs 1 -11 0

Euro Corp A/above 10+ yrs 11 -1 0

Euro Corp BBB 1-10 yrs 2 -66 -2

Euro Corp BBB 10+ yrs 22 -26 -6

Euro Mortgage Loans 9 NA NA

US Corp A/above 1-10 yrs 0 -1 0

US Corp A/above 10+ yrs 0 -2 0

US Corp BBB 1-10 yrs 0 -21 0

US Corp BBB 10+ yrs 1 -19 0

Euro HY BB&B 3 -89 -3

US HY BB&B 0 -56 0

EM Sovereigns 0 -15 0

EM Corporates 0 -48 0

US Equities 1 -18 0

Europe Equities 7 -55 -4

Private Equity 1 NA NA

Hedge Funds 0 NA NA

Europe Real Estate 2 NA NA

Total 100 NA -14

Source: Bloomberg, MSCI, JP Morgan, S&P Global, Cambridge Associates, HFRI, Neuberger Berman. Data as of April 2023. Indices used: Bloomberg-Barclays 
Indices for Government/Agency Debt, Corporate Bonds, US Equities and Europe Equities; JPM EMBI for Emerging Markets Sovereign Debt; JPM CEMBI for 
Emerging Markets Corporate Bonds; Cambridge Associates Indices for Private Equity; HFRI Indices for Hedge Funds; MSCI and S&P Global Indices for Real 
Estate. German Government Bonds and Pfandbriefe are used as proxies for Euro Government Bonds and Covered Bonds. Carbon Intensity and Carbon 
Footprint data are calculated on Scope 1 and 2 emissions. Past performance is no guarantee of future results. Please note that estimated returns 
data is based on NB’s capital markets assumptions and are provided for information purposes only. There is no guarantee that estimated returns will be 
realized or achieved nor that an investment strategy will be successful, and may be significantly different than shown here. Investors should keep in mind 
that the securities markets are volatile and unpredictable. There are no guarantees that historical performance of an investment, portfolio, or asset class will 
have a direct correlation with its future performance. Net returns will be lower.
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PART II 
THEMATIC ARTICLES

CLIMATE RISK ASSESSMENT 
OF THE SOVEREIGN BOND 
PORTFOLIO OF EUROPEAN 
INSURERS40

Stefano Battiston41, Petr Jakubik42, Irene Monasterolo43, Keywan 
Riahi44, Bas van Ruijven44

ABSTRACT

In the first collaboration between climate economists, climate financial risk modellers and fi-
nancial regulators, we apply the CLIMAFIN framework described in Battiston at al. (2019) to 
provide a forward-looking climate transition risk assessment of the sovereign bonds’ portfoli-
os of solo insurance companies in Europe. We consider a scenario of a disorderly introduction 
of climate policies that cannot be fully anticipated and priced in by investors. First, we anal-
yse the shock on the market share and profitability of carbon-intensive and low-carbon activ-
ities under climate transition risk scenarios. Second, we define the climate risk management 
strategy under uncertainty for a risk averse investor that aims to minimise her largest losses. 
Third, we price the climate policies scenarios in the probability of default of the individual 
sovereign bonds and in the bonds’ climate spread. Finally, we estimate the largest gains/losses 
on the insurance companies’ portfolios conditioned to the climate scenarios. We find that 
the potential impact of a disorderly transition to low-carbon economy on insurers portfolios 
of sovereign bonds is moderate in terms of its magnitude. However, it is non-negligible in 
several scenarios. Thus, it should be regularly monitored and assessed given the importance 
of sovereign bonds in insurers’ investment portfolios.

1. INTRODUCTION

The topic of sustainable finance has gained attention among European insurers and the 
financial supervisory community alike. This is fuelled by recent initiatives promoted by 

40 The authors are grateful to Alan Roncoroni and Alejandra Salazar Romo from the UZH FINEXUS Center for 
Financial Networks and Sustainability for their support in the pricing model and in the empirical analysis as well 
as Alessandro Fontana from the European Insurance and Occupational Pensions Authority for the provided data 
support. In addition, Stefano Battiston acknowledges the support of the Schwyzer-Winiker foundation, while 
Irene Monasterolo acknowledges the support of the RiskFinPorto ACRP 10th call project. Irene Monasterolo and 
Stefano Battiston acknowledge the support of the EU FET Innovation Launchpad CLIMEX and of the INSPIRE 
grant.

41 Dept. of Banking and Finance, FINEXUS Center, University of Zurich (UZH) and Swiss Finance Foundation.

42 European Insurance and Occupational Pensions Authority (EIOPA)

43 Vienna University of Economics and Business (WU) and Boston University (BU)

44 International Institute for Applied Systems Analysis (IIASA)
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financial supervisors, central banks and policy makers to align finance to sustainability. 
For instance, in 2018 several international central banks and financial regulators launched 
the Central Banks and Financial Regulators’ Network for Greening the Financial System 
(NGSF 2018). In 2019, the European Commission (EC) launched the “Action Plan on 
Sustainable Finance” to tackle climate related risks and achieve the long-term goal of 
economic transformation towards a low-carbon economy. These initiatives are aimed to 
mitigate the potential financial risks stemming from a disorderly low-carbon transition, 
by supporting the alignment of investments to the climate targets.

Limiting the global temperature increase to 2°C above pre-industrial levels (i.e. consis-
tently with Paris Agreement, UNFCCC 2016) requires the timely and coordinated intro-
duction of climate policies, e.g. a global carbon tax (Stiglitz et al., 2017; IMF, 2019) aimed 
to drastically decrease the CO2 emissions produced by the combustion of fossil fuels in 
the economy.

However, governments are delaying in the introduction of climate policies, leading po-
tentially to a disorderly transition, where the introduction of climate policies is sudden 
and cannot be fully anticipated and priced in by investors (Battiston et al., 2017). In this 
context, firms whose revenues depend directly or indirectly on use of fossil fuels ener-
gy and electricity could face significant losses (the so-called “carbon stranded assets”, 
Leaton et al. 2012). These losses will affect the value of the financial contracts issued 
by such firms and cascade onto their investors (Battiston et al., 2017), with implications 
on price volatility if large and correlated asset classes are involved (Monasterolo et al., 
2017), and on firms and countries’ financial stability (Battiston and Monasterolo, 2019). 
In this respect, not only climate related exposures of insurance firms towards the corpo-
rate sector but also towards the sovereigns in which those activities take place could be 
negatively affected. Given the role of the insurance sector in the economy and finance, 
the exposure of insurance firms to climate-related financial risks deserve to be monitored 
and assessed.

A main obstacle for insurers to embed climate in their portfolios’ risk management strat-
egies is represented by the lack of appropriate methodologies to price forward-looking 
climate risks and opportunities in the value of individual financial contracts and in the 
probabilities of default of investors portfolios. The reason is that climate risks are for-
ward-looking (because they refer to future occurrences), characterised by deep uncer-
tainty (thus leading to fat tailed distributions, Weitzman, 2009), non-linearity (Ackerman, 
2017), and endogeneity that could give rise to multiple equilibria (Battiston et al., 2017). 
These characteristics makes the reliance on historical data much less relevant for risk 
assessment. This means that climate transition risks cannot be priced based on historical 
market data (e.g. to calculate volatility measures), but require to use the information on 
future climate policy shocks produced by climate economic models (e.g. Integrated As-
sessment Models - IAMs), and to introduce climate ambiguity.

Nevertheless, traditional financial pricing models (e.g. Merton, 1974; Black and Scholes, 
1973; Black and Cox, 1976; Duffie and Singleton, 1999) are not able by construction to em-
bed the characteristics of climate risks. Indeed, their financial risk assessment is based on 
past firms’ performance (e.g. the computation of volatility measures based on historical 
data). In addition, they are constrained by conditions of normal distributions, complete 
markets, and lack of arbitrage (Battiston and Monasterolo, 2019).

Thus, pricing climate in investors’ portfolio requires to move from the backward-look-
ing nature of traditional financial risk assessment and of investors’ benchmarks to a for-
ward-looking assessment of risk. In this paper, we develop an application of the CLIMA-
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FIN framework (Battiston et al., 2019) to calculate the probability of default of sovereign 
bonds, portfolio’s financial risk metrics (e.g. the Climate Spread), and the largest losses/
gains on insurers’ portfolios conditioned to future climate transition shocks. This analysis 
represents the first climate-financial risk assessment developed in collaboration between 
scientists of the climate economic community that informs the Intergovernmental Panel 
on Climate Change (IPCC), climate financial risk experts and a financial regulatory insti-
tution with a mandate to contribute to financial stability.

We build on CLIMAFIN, because it is the first approach to combine forward-looking cli-
mate transition risk shocks and associated economic trajectories based on We build on 
CLIMAFIN because it is the first approach to combine forward-looking climate transition 
risk scenarios and associated economic trajectories based on climate economic models, 
with financial pricing models and financial risk metrics. In addition, CLIMAFIN provides 
a transparent and robust methodology for climate financial risk assessment under deep 
uncertainty, by considering the characteristics of climate risks and of financial risks. 

In this application, we build on the LIMITS45 database of climate policy scenarios (Kriegler 
et al., 2013). These models are the reference for scientific community and the IPCC, with 
climate financial risk metrics and methods that are now a reference in both the academic 
and practitioners’ community, i.e. the Climate Spread, the Climate VaR, climate financial 
pricing models and financial network-based Climate Stress-tests (Battiston et al., 2017).  
In the context of potentially destabilizing financial impact of a disorderly climate transi-
tion and of unmitigated climate change, transparent and robust methodologies can sup-
port financial supervisors’ policy decisions to align finance to sustainability and climate 
targets while preventing financial instability.

This article is organized as follows. Section 2 elaborates on the relevant literature. Sec-
tion 3 provides a description of the data sample used and the section 4 describes the 
CLIMAFIN methodology for pricing forward-looking climate transition risks in the value 
of sovereign bonds and in investors’ portfolios. The results of empirical analysis conduct-
ed on the portfolios of EU insurance companies are presented in section 5, while section 
6 concludes discussing the linkages with the next steps of this research into the Climate 
Stress-test.

2. LITERATURE REVIEW

Recent research suggest that climate risks (and opportunities) are not properly priced 
yet in the value of financial contracts and thus, in investor portfolios’ risk management 
strategies. This means that investors might, on the one hand, increase (and trade) their 
exposure to climate risks, and on the other hand, they might delay the scaling-up of 
green investments.

The literature has mostly covered corporate debt contracts, only recently the attention 
has focused on sovereign bonds and equity holdings. Alessi et al. (2019), Zerbib (2019) 
and Karpf and Mandel (2018) assessed if a green bonds’ premium exists in the bond mar-
ket, but found very different results, based on the type of bonds contract analysed and 
the “green” definition used. In the catastrophe bonds (CAT) market, Morana and Sbrana 

45 See the LIMITS database documentation for more details https://tntcat.iiasa.ac.at/LIMITSDB/static/down-
load/LIMITS_overview_SOM_Study_Protocol_Final.pdf
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(2019) found that despite climate-led disasters have steadily increased from year 2000, 
the “multiple” (i.e. the return per unity of risk) of the CAT bonds has decreased.

Monasterolo and de Angelis analysed the US, EU and global stock market’s reaction 
to the announcement of the Paris Agreement. They found that the overall systematic 
risk for the low-carbon indices decreases consistently, while stock markets’ reaction is 
mild for most of carbon-intensive indices. Ramelli et al. (2018) and Wagner et al. (2018) 
analysed the stock market’s reaction to the election of Trump as President of the United 
States, and the appointment of the climate skeptic Scott Pruitt as a head of the US En-
vironmental Protection Agency, and found opposite results, i.e. that investors rewarded 
companies in high-emissions industries/companies demonstrating more responsible cli-
mate strategies.

With regard to sovereign bonds, Crifo et al. (2017) find that high country’s Environmental 
Social Governance (ESG) ratings are associated with low borrowing costs (spread) for 
short-maturity sovereign bonds in advanced economics. In the contest of low-income 
countries, Kling et al. (2018) focus on the most climate vulnerable low-income countries 
(V20) exposed to climate physical risk occurred in the past. They find a slightly higher 
cost of debt for a few countries, but they also point out the caveats that apply, such as 
the peculiarity of sovereign bonds’ markets in low- income countries and the nature of 
risks (e.g. geopolitical) to consider in the sovereign valuation.

All these analyses, despite focusing on different types of financial contracts and climate 
risks analyse climate shocks that occurred in the past, and that could have represented 
a  structural break in the series of prices and performance. In contrast, Battiston and 
Monasterolo (2019) developed the first approach to price forward-looking climate tran-
sition risks in the value of individual sovereign bonds, by including the characteristics of 
climate risks (i.e. uncertainty, non-linearity and endogeneity of risk) in financial valuation. 
They applied the model to the sovereign bonds of the OECD countries included in the 
Austrian National Bank (OeNB)’s non-monetary policy portfolio. They found that the 
(mis)alignment of an economy could already be reflected in the sovereign bonds’ spread 
(i.e. the climate spread) and change the fiscal and financial risk position of a country.

Since financial investors take decisions based on what they can measure, and their deci-
sions do influence (and are influenced by) the benchmark in their respective markets, as-
sessing climate risks in financial contracts is crucial from an investors’ risk management 
perspective, and for financial supervisors whose mandate is about preserving financial 
stability. To our knowledge, this article is the first study assessing climate-related finan-
cial risks stemming from insurance companies’ exposures to sovereign bonds.
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3. DATA SAMPLE

We utilized Quarterly Solvency II Reporting Template on List of Assets (SII QRT)46 and 
Centralized Security Database (CSDB). Solo data of insurers from 31 countries in EU/EEA 
that reported Solvency II data at the end of 2018 are employed. Our dataset includes all 
insurers’ investments into sovereign bonds (CIC code equal 1). This data is complemented 
by information on the characteristics of the bonds available from the CSDB. The final 
dataset contains 1576 insurance companies, 142 bond issuers and 10746 bonds. The total 
amount of the insurance government portfolio considered is 2.1 trillion EUR. The full de-
scription of the data set utilized in this study is provided in the table below.

46 S.06.02 template.
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Table A1.1: List of variables utilized

Variable name Description

Insurance identifier Unique identifier of solo insurance company (SII QRT)

Home country Country of authorization of the insurer (SII QRT)

ISIN code ISIN conde of the sovereign bond (SII QRT)

Issuer’s country Country that issued the bond (SII QRT)

Duration Residual duration of the bond (SII QRT)

Maturity Maturity date of the bond (SII QRT)

Term Difference in years between the date of bond’s maturity and 
the date of bond issuance (SII QRT)

Price Market value of the bond (SII QRT)

Nominal value Nominal value of the bond (SII QRT)

Coupon Coupon of the bond (CSDB)

Coupon type Type of the bond’s coupon (fix, zero coupon) (CSDB)

Coupon frequency Coupon frequency of the bond (monthly, bi-monthly, 
quarterly, semi-annually, annually, zero coupon) (CSDB)

Note: All variables refer to 2018Q4.

4. METHODOLOGY

In this section, we introduce the concepts of climate physical and transition risks. 
Then, we define the climate policy shocks that we analyse in the context of a  disor-
derly low-carbon transition. Finally, we present the CLIMAFIN tool that we apply to 
price forward-looking climate transition risk in the value of individual sovereign bonds 
(introducing the climate sovereign spread) under deep uncertainty, and to assess the 
largest gains/losses on investors’ portfolios. CLIMAFIN includes climate scenarios ad-
justed financial pricing models (for equity holdings, sovereign and corporate bonds, and 
loans) and climate scenarios conditioned risk metrics (such as the Climate Spread and 
the Climate VaR). These allow us to embed forward-looking climate risk scenarios in the 
valuation of counterparty risk, in the probability of default of securities and in the largest 
losses on investors’ portfolios (Battiston et al., 2019).

We opted for CLIMAFIN for two reasons. First, it is the first approach that combines for-
ward-looking climate transition risk shocks and associated economic trajectories based 
on climate economic models (in this application, the LIMITS IAMs), which are the refer-
ence for the scientific community and the IPCC, with climate financial risk metrics and 
methods that are now a reference in both the academic and practitioners’ community 
(Battiston et al., 2019). Second, CLIMAFIN provides a transparent and robust methodol-
ogy for climate financial risk assessment under deep uncertainty. Importantly, this rep-
resents the first climate-financial risk assessment developed in collaboration between 
scientists of the climate economic community, climate financial risk experts and a finan-
cial regulatory institution with a financial stability mandate.
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4.1.  CLIMATE CHANGE AND FINANCIAL STABILITY: TRANSITION 
RISKS

Two main channels of risk transmissions from climate change to finance have been iden-
tified and analyzed so far, i.e. climate physical risks and climate transition risks. In our 
analysis we focus on climate transition risk because while climate physical risks are ex-
pected to be more visible in the mid to long-term period, triggering potentially irrevers-
ible socio-economic and environmental impacts (see IPCC 1.5°C 2018 Allen et al. 2018, 
Steffen et al. 2018), climate transition risks could happen sooner and be more financially 
relevant (V. de Gaulhau (2018))47.

Climate transition risk refers to the economic and financial risk arising from a  sudden 
revaluation of carbon-intensive and low-carbon assets and that cannot be fully antici-
pated by financial actors. This risk can be driven by (i) Technological shocks (e.g. the fast 
decrease of renewable energy production costs and fast increase in their performance, 
or the change in minimum technology standards); (ii) Policy and regulatory shocks (e.g. 
the disordered introduction of a global carbon tax IMF, 2019) or a change in prudential 
regulation such as the introduction of Green Supporting Factors (HLEG, 2018); (iii) the 
sudden changes in the climate sentiments of financial actors (Dunz et al., 2019), as a re-
sult of the expectations of market participants about the implementation of the climate 
policies.

Most important, climate risks differ from the type of risks that investors are used to 
consider in finance. In particular, the nature of climate risks introduces several conceptu-
al and methodological challenges for traditional economic and financial models, which 
then need to consider (Monasterolo, 2019):

 › Non-linearity of impacts. The probability of forward-looking climate shocks can’t be 
inferred from historical data being non-linear and not normally distributed (Acker-
man, 2017);

 › Forward-looking nature of risk. The impacts of climate change are on the time scale 
of two decades or longer1. However, the time horizon of financial markets is much 
shorter. Investors’ decisions follow a much shorter time horizon (e.g. three months 
for fund managers) and are based on a  market benchmark (performance) that is 
backward-looking because estimated on past companies’ performance.

 › Deep uncertainties that characterize climate impacts and their costs, due to the na-
ture of the earth system that leads to the presence of tail events (Weitzman 2009), 
tipping points and domino effects (Steffen et al., 2018), which are associated to large 
uncertainty (Kriegler et al., 2009). Tipping points mean that the estimates of the 
costs and benefits of (in)action may vary substantially across climate scenarios with 
the assumptions on agents’ utility function, future productivity growth rate, and 
intertemporal discount rate (Stern, 2008, Pyndick, 2013).

 › Endogeneity and circularity of climate risk. The likelihood of achieving the global cli-
mate targets depends on the orderly introduction of climate policies, and their antic-
ipation by financial actors in their investment decisions. However, climate policies’ 
uncertainty affects investors’ expectations on the financial risk deriving from the 
very same policies, and thus their investment decision. In turn, the lack of climate 
aligned investments makes it impossible to achieve the climate policy targets. This 
generates the possibility of multiple equilibria, a situation where a  rational agent 
cannot identify a preferred investment strategy (Battiston and Monasterolo, 2018).

47 https://www.bis.org/review/r180419b.htm
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4.2. THE CLIMAFIN CLIMATE FINANCIAL RISK PRICING MODEL

4.2.1. Climate policy scenarios

We consider the climate policy scenarios developed by the International Scientific Com-
munity and reviewed by the IPCC. In particular, we select all the climate policy scenarios 
aligned to the 2°C target made available from the LIMITS project, which includes six 
IAMs. We use the LIMITS project database (Kriegler et al., 2013) to compute the trajec-
tories of the shocks in the market shares for several variables, including the output of 
all the economic activities in primary and secondary energy (e.g. primary energy from 
fossil fuels, electricity produced by solar panels, etc.) conditioned to climate policies’ 
introduction (i.e. a carbon tax). The two emissions concentration targets chosen under 
milder and tighter climate policy scenarios (i.e. 500 parts per million (ppm) and 450 ppm) 
refer to the stabilization concentration of CO2 at the end of century consistently with 
the 2°C aligned scenarios, and are associated to two different policy implementation 
scenarios, i.e. the

Reference Policy (RefPol) and the Strong Policy (StrPol) (IPCC, 2014). RefPol assumes 
a weak near-term target by 2020 with fragmented countries’ action, while StrPol assumes 
a stringent near-term target by 2020 with fragmented countries’ action, to achieve emis-
sions reduction by 2050. The 500 and 450 ppm scenarios are associated to a probabil-
ity of exceeding the 2°C target by 35-59% and 20-41% respectively (Menishausen et al., 
2009). Thus, the choice of specific emissions concentration targets could be considered 
as a proxy for the stringency of the global emission cap imposed by potential climate 
treaty. A change in climate policy (i.e. in the value of the carbon tax every 5 years’ time 
step) implies a change in the sectors’ macroeconomic trajectory, and thus a change in the 
market share of primary and secondary energy sources based on their energy technology 
(fossil/renewable).

4.2.2. Climate policy shocks

In the context of climate transition risks, climate policy shocks are defined as the transi-
tion from a business as usual scenario of no climate policy, to a policy scenario charac-
terised by the introduction of a climate policy (e.g. a carbon tax, or a Green Supporting 
Factor). Climate policy shocks arise from a disorderly transition, i.e. when the introduc-
tion of climate-aligned policies is carried out at a  schedule that is not predictable by 
investors. These, in turn, cannot fully anticipate (and price) it in their portfolios’ risk man-
agement strategies (Battiston et al., 2017; NGSF, 2019). In the current scenario where 
governments have not coordinated yet to introduce stable climate policies, we might 
end up in a disorderly transition scenario (Battiston, 2019). The transition entails a jump 
from one equilibrium state of the economy (e.g. the current state) to another equilibrium 
state where the composition of the economy and the weight of the economic activities 
(carbon-intensive, low-carbon) could consistently change.

In a disorderly transition, assets price adjustments would directly or indirectly negatively 
impact the value of fossil fuels and related assets. The lack of investors’ anticipation of 
the climate policy shock could have relevant and long-lasting consequences for the fi-
nancial conditions of a private investor and of a sovereign, and eventually it would affect 
the achievement of the 2°C aligned climate mitigation scenarios. As several recent policy 
events show (e.g. the US withdrawal from Paris Agreement, the outcome of 2018 Italian 
elections), the assessment of the future policy shock could be incorrect even on average 
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across market participants, and yet can have severe long-term effects on the financial 
conditions of a country (Battiston, 2019).

4.2.3. Investors’ information set

Here we present the information set that a rational risk averse investor should use to 
assess financial risk under climate transition scenarios. We consider a risk averse investor 
that aims to assess the exposure of her portfolio to forward-looking climate transition 
risk. This information set can accommodate the presence of incomplete information and 
deep uncertainty (Keynes, 1973; Knight, 1921; Greenwald and Stiglitz, 1986). The informa-
tion set covers a time-horizons that is relevant both for investment strategies and for the 
low-carbon transition from 2020 to 2050, and is composed of:

 › Climate policy scenarios corresponding to Greenhouse Gases (GHG) emission 
reduction target across regions (B = Business-as-Usual), provided e.g. by the IPCC 
reports;

 › The future economic trajectories for carbon-intensive and low-carbon activities, 
provided by climate economic models (e.g. IAMs);

 › A set of forward-looking Climate Policy Shock Scenarios intended as a disorderly 
transition from B (Business as Usual) to P (a given climate policy scenario);

 › A set of Climate Policy Shocks on the economic output of low-carbon/carbon-in-
tensive activities, on their Gross Value Added (GVA) and on their contribution to 
the fiscal revenues of the sovereign. The policy shocks are conditioned to transition 
scenarios and, to a specific climate economic model.

4.2.4. Investors’ risk management strategy

The investor’s risk management strategy is based on the minimization of the worst-case 
losses of the portfolio under different forward-looking climate transition scenarios. The 
definition of the risk management strategy accounts for (i) the investor’s specific risk 
aversion levels, (ii) the counterparty risk adjusted for climate policy shock scenarios (e.g. 
Probability of Default (PD)), (iii) metrics relevant for financial regulation (e.g. risk mea-
sures such as the Climate Spread and VaR). The Climate VaR Management Strategy can 
be written as:

ClimVaRStr = minPortfolio{maxShock{VaR(Portfolio,Adj.PD│Policy Shock)}}

In this context, future asset prices are subject to shocks that depend on the issuer’s 
future economic performance, the risk premia demanded by the market, as well as the 
implementation of the climate policy and the outcome of the energy transition of indi-
vidual firms and countries. The investor considers different feasible climate policy sce-
narios (but has no information on the probability associated) for which she can calculate 
the impacts (negative or positive) on the market share of carbon-intensive or low-carbon 
economic activities and firms. The investor is subject to incomplete information on her 
(and competitors’) exposure to risk stemming from a disordered transition from a climate 
policy scenario to another one, uncertainty on the outcome of the firms and country’s 
energy transition, and no information on the probability distribution. Thus, her risk man-
agement strategy is to consider a  set of feasible climate transition scenarios that her 
portfolio should withstand, and then compute the VaR conditional to those scenarios.

FINANCIAL STABILIT Y REPORT

77



4.2.5. Composition of the economy

We consider n countries j whose economy is composed of m economic sectors S. Eco-
nomic activities included in S are based on a refined classification of the Climate Policy 
Relevant Sectors (CPRS Rev 2), which identify the main sectors that are relevant for cli-
mate transition risk (fossil-fuel, electricity (from fossil or renewable sources), energy-in-
tensive, transportation (low/high-carbon), buildings), and were originally introduced in 
Battiston et al. (2017). As a difference from the NACE classification of economic sectors, 
CPRS Rev 2 capture the energy and electricity technology embedded in the econom-
ic activity (e.g. utility|electricity|wind, solar, gas). Firms that compose economic sectors 
S are considered as a portfolio of cash-flows. The classification of countries and regions 
affected by the climate shock is based on the LIMITS aggregation48, see Kriegler et al. 
(2013).

4.2.6. Impact of climate policy shock on economic activities’ GVA and profitability

We consider the contribution of issuer j to the sector S GVA and fiscal assets and how 
this can be affected by changes in its economic performance, either negatively or pos-
itively. We then relate the performance of the economic activity to the change in its 
market share as a result of a climate transition scenario.

In a disorderly transition, a climate policy shock affects the performance of issuers in 
sectors S via a change in economic activities’ market share, cash flows and profitability, 
eventually affecting the GVA of the sector. The climate policy shock is calculated at the 
sector, country and regional level. The country’s GVA composition is available at NACE 
2-digit level from official statistics (e.g. from Eurostat). Negative shocks result from the 
policy impact on the GVA of sectors based on carbon-intensive (i.e. fossil fuels) tech-
nologies, while positive shocks result from the impact on the GVA of sectors based on 
low-carbon (i.e. renewable energy) technologies.

We assume that a percentage shock on output to a percentage shock on GVA, 𝑢𝑢"#$%(P)	=	
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(P) is the shock on the GVA of sector S of the sovereign issuer j; 𝑢𝑢"#$%(P)	=	
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(B) 
is the share of GVA of sector S. We then define the net fiscal assets related to sector S, 
Aj(S),as the difference between accrued fiscal revenues from sector S and public invest-
ments and subsidies granted by j  to the same sector. The impact of the market share 
shock (resulting from the policy shock P) on net fiscal assets of sector S is thus assumed 
to imply a change Aj(S, P, M) as follows:

Where 
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 denotes the elasticity of sector S profitability with respect to the market share. 
While the policy shock could affect at the same time several sectors in the economy 
of the issuer j, here we consider the total net effect on the issuer’s net fiscal assets as 
follows:

48 See the LIMITS database documentation for more details https://tntcat.iiasa.ac.at/LIMITSDB/ static/down-
load/LIMITS_overview_SOM_Study_Protocol_Final.pdf

𝑢𝑢"#$%(P)	=	
#$%+	(,)	-	#$%+	(.)

#$%+	(.)
	=	∑ 𝑢𝑢",1#$%(𝑃𝑃)	𝑤𝑤",1#$%(𝐵𝐵)5 		

	
∆%+(5,,,7)
%+(5)

	=	𝜒𝜒1	𝑢𝑢"(𝑆𝑆, 𝑃𝑃,𝑀𝑀)		

	
∆%+(,,7)

%+
	=	∑ (∆%+(5,,,7)

%+(5)1 		%+(5)
%+
)	=	∑ 𝜒𝜒11 	𝑢𝑢"(𝑆𝑆, 𝑃𝑃,𝑀𝑀)	

%+(5)
%+
	

	𝑢𝑢"
#$%(P)	=	#$%+	(,)	-	#$%+	(.)

#$%+	(.)
	=	∑ 𝑢𝑢",1#$%(𝑃𝑃)	𝑤𝑤",1#$%(𝐵𝐵)5 		

	
∆%+(5,,,7)
%+(5)

	=	𝜒𝜒1	𝑢𝑢"(𝑆𝑆, 𝑃𝑃,𝑀𝑀)		

	
∆%+(,,7)

%+
	=	∑ (∆%+(5,,,7)

%+(5)1 		%+(5)
%+
)	=	∑ 𝜒𝜒11 	𝑢𝑢"(𝑆𝑆, 𝑃𝑃,𝑀𝑀)	

%+(5)
%+
	

	

EUROPEAN INSUR ANCE AND OCCUPATIONAL PENSIONS AUTHORIT Y

78



𝑢𝑢"#$%(P)	=	
#$%+	(,)	-	#$%+	(.)

#$%+	(.)
	=	∑ 𝑢𝑢",1#$%(𝑃𝑃)	𝑤𝑤",1#$%(𝐵𝐵)5 		

	
∆%+(5,,,7)
%+(5)

	=	𝜒𝜒1	𝑢𝑢"(𝑆𝑆, 𝑃𝑃,𝑀𝑀)		

	
∆%+(,,7)

%+
	=	∑ (∆%+(5,,,7)

%+(5)1 		%+(5)
%+
)	=	∑ 𝜒𝜒11 	𝑢𝑢"(𝑆𝑆, 𝑃𝑃,𝑀𝑀)	

%+(5)
%+
	

	

The elasticity coefficient could be estimated empirically for the specific sectors of the 
sovereign issuers in the portfolio. However, in our application, the data to carry out this 
estimation was not available. Thus, for estimating the elasticity we consider a mild and 
adverse scenario with values equal to equal to 0.2 and 0.5, respectively (see also Battis-
ton and Monasterolo, 2019). This allows us to provide an estimation of the magnitude of 
the shocks due to a given climate policy scenarios P, where the shock is transmitted to 
the value of the sovereign bond via the change in sectors’ market share, GDP and fiscal 
assets.

4.2.7. Model for sovereign bonds’ valuation

We consider a risky (defaultable) bond of a sovereign entity j, issued at t0 with maturity 
T. The value of the sovereign bond at time T, with R being the Recovery Rate of the bond 
(i.e. the percentage of notional recovered upon default), and LGD Loss-Given-Default 
(i.e. the percentage loss) can be written as:

The unitary price Pj(t) of the sovereign bond at time t<T and t>t0 follows the usual defini-
tion of discounted expected value at the maturity,

where rf is the risk-free rate and the expectation is taken under the risk neutral measure. 
Moreover, the cumulative probability of default Q, is related to the annual probability 
of default as follows: Q = 1 – (1 – q)(T – t).The formula can be used to determine from the 
market price the value of the annual default probability q, called “q implied”, for a given 
risk free rate and LGD. In the case of a multi-coupon bond, the formula gets more compli-
cated since one has to sum over the expected value of the coupons but the logic remains 
the same. For each coupon k, the coupon amount is assumed to be paid only if j does 
not default before. The determination of the q implied requires then to solve numerically 
a polynomial equation.

4.2.8. Sovereign default conditions

Following a stream of literature (Gray et al., 2007), we model the payoff of the default-
able sovereign bond as dependent on the ability of the sovereign to repay the debt out 
of its fiscal revenues accrued until the maturity. Differently from Gray et al. (2007), we 
do not consider whether debt is issued in local or foreign currency, nor the exchange 
rate risk.

We can define the sovereign’s net fiscal assets at the present time of the valuation and at 
the maturity respectively as Aj(t) and Aj(T),and the liabilities at the maturity as Lj(T).Thus, 
the sovereign default conditions read as:
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, with 𝜃𝜃"(𝑃𝑃) = 𝜃𝜃"(𝐵𝐵) - 𝜉𝜉"(𝑃𝑃) 
 
 
𝜉𝜉" = 𝜒𝜒"𝑢𝑢",CDEF(P), 
 
 
∆𝑞𝑞"(𝑃𝑃) 
 
 
|𝑢𝑢",CDEF(P)|  
 
 
𝑢𝑢",CDEF(P)<0 
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∆𝑞𝑞"(𝑃𝑃)= 𝑞𝑞"(𝑃𝑃)	- 𝑞𝑞"(𝐵𝐵) = ∫ 𝜙𝜙?98@𝑑𝑑𝜂𝜂"

78(5)
9:;<

, with 𝜃𝜃"(𝑃𝑃) = 𝜃𝜃"(𝐵𝐵) - 𝜉𝜉"(𝑃𝑃) 
 
 
𝜉𝜉" = 𝜒𝜒"𝑢𝑢",CDEF(P), 
 
 
∆𝑞𝑞"(𝑃𝑃) 
 
 
|𝑢𝑢",CDEF(P)|  
 
 
𝑢𝑢",CDEF(P)<0 

 on j’s net fiscal assets (as a “jump” up or down), assum-
ing that the idiosyncratic shock 𝐴𝐴"(𝑇𝑇)= 𝐴𝐴"(𝑡𝑡) (1+𝜂𝜂"(𝑇𝑇) + 𝜉𝜉"(𝑃𝑃))<	𝐿𝐿"(𝑇𝑇) ⟺ 𝜂𝜂"(𝑇𝑇) < 𝜃𝜃"(𝑃𝑃)  

= 𝐿𝐿"(𝑇𝑇)/𝐴𝐴"(𝑡𝑡) – 1 - 𝜉𝜉"(𝑇𝑇, 𝑃𝑃) 
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, with 𝜃𝜃"(𝑃𝑃) = 𝜃𝜃"(𝐵𝐵) - 𝜉𝜉"(𝑃𝑃) 
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∆𝑞𝑞"(𝑃𝑃) 
 
 
|𝑢𝑢",CDEF(P)|  
 
 
𝑢𝑢",CDEF(P)<0 

 and policy shock 𝐴𝐴"(𝑇𝑇)= 𝐴𝐴"(𝑡𝑡) (1+𝜂𝜂"(𝑇𝑇) + 𝜉𝜉"(𝑃𝑃))<	𝐿𝐿"(𝑇𝑇) ⟺ 𝜂𝜂"(𝑇𝑇) < 𝜃𝜃"(𝑃𝑃)  
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, with 𝜃𝜃"(𝑃𝑃) = 𝜃𝜃"(𝐵𝐵) - 𝜉𝜉"(𝑃𝑃) 
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∆𝑞𝑞"(𝑃𝑃) 
 
 
|𝑢𝑢",CDEF(P)|  
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 are independent. The new sover-
eign default condition reads as:
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∆𝑞𝑞"(𝑃𝑃) 
 
 
|𝑢𝑢",CDEF(P)|  
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where 𝐴𝐴"(𝑇𝑇)= 𝐴𝐴"(𝑡𝑡) (1+𝜂𝜂"(𝑇𝑇) + 𝜉𝜉"(𝑃𝑃))<	𝐿𝐿"(𝑇𝑇) ⟺ 𝜂𝜂"(𝑇𝑇) < 𝜃𝜃"(𝑃𝑃)  
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, with 𝜃𝜃"(𝑃𝑃) = 𝜃𝜃"(𝐵𝐵) - 𝜉𝜉"(𝑃𝑃) 
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 is the default threshold under scenario P, 𝐴𝐴"(𝑇𝑇)= 𝐴𝐴"(𝑡𝑡) (1+𝜂𝜂"(𝑇𝑇) + 𝜉𝜉"(𝑃𝑃))<	𝐿𝐿"(𝑇𝑇) ⟺ 𝜂𝜂"(𝑇𝑇) < 𝜃𝜃"(𝑃𝑃)  
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, with 𝜃𝜃"(𝑃𝑃) = 𝜃𝜃"(𝐵𝐵) - 𝜉𝜉"(𝑃𝑃) 
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∆𝑞𝑞"(𝑃𝑃) 
 
 
|𝑢𝑢",CDEF(P)|  
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 is the climate policy shock 
from B to P (can be positive or negative) that shifts the idiosyncratic shock 𝐴𝐴"(𝑇𝑇)= 𝐴𝐴"(𝑡𝑡) (1+𝜂𝜂"(𝑇𝑇) + 𝜉𝜉"(𝑃𝑃))<	𝐿𝐿"(𝑇𝑇) ⟺ 𝜂𝜂"(𝑇𝑇) < 𝜃𝜃"(𝑃𝑃)  
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, with 𝜃𝜃"(𝑃𝑃) = 𝜃𝜃"(𝐵𝐵) - 𝜉𝜉"(𝑃𝑃) 
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, with 𝐴𝐴"(𝑇𝑇)= 𝐴𝐴"(𝑡𝑡) (1+𝜂𝜂"(𝑇𝑇) + 𝜉𝜉"(𝑃𝑃))<	𝐿𝐿"(𝑇𝑇) ⟺ 𝜂𝜂"(𝑇𝑇) < 𝜃𝜃"(𝑃𝑃)  
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𝑢𝑢",CDEF(P)<0 

>1, 
possibly correlated across j.

4.2.9. Sovereign default probability

We can define the Probability of Default (PD) qj(P) of issuer j under Climate Policy Sce-
nario P as:

where 

𝐴𝐴"(𝑇𝑇)= 𝐴𝐴"(𝑡𝑡) (1+𝜂𝜂"(𝑇𝑇) + 𝜉𝜉"(𝑃𝑃))<	𝐿𝐿"(𝑇𝑇) ⟺ 𝜂𝜂"(𝑇𝑇) < 𝜃𝜃"(𝑃𝑃)  
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 is the probability distribution of idiosyncratic shock 
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, with 𝜃𝜃"(𝑃𝑃) = 𝜃𝜃"(𝐵𝐵) - 𝜉𝜉"(𝑃𝑃) 
 
 
𝜉𝜉" = 𝜒𝜒"𝑢𝑢",CDEF(P), 
 
 
∆𝑞𝑞"(𝑃𝑃) 
 
 
|𝑢𝑢",CDEF(P)|  
 
 
𝑢𝑢",CDEF(P)<0 

, 

𝐴𝐴"(𝑇𝑇)= 𝐴𝐴"(𝑡𝑡) (1+𝜂𝜂"(𝑇𝑇) + 𝜉𝜉"(𝑃𝑃))<	𝐿𝐿"(𝑇𝑇) ⟺ 𝜂𝜂"(𝑇𝑇) < 𝜃𝜃"(𝑃𝑃)  
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|𝑢𝑢",CDEF(P)|  
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 is the lower 
bound of distribution support.

In principle, frequent small productivity shocks across time and firms occur in a similar 
way, with or without the climate policy shock. We introduce now a proposition of the 
PD adjustment 

𝐴𝐴"(𝑇𝑇)= 𝐴𝐴"(𝑡𝑡) (1+𝜂𝜂"(𝑇𝑇) + 𝜉𝜉"(𝑃𝑃))<	𝐿𝐿"(𝑇𝑇) ⟺ 𝜂𝜂"(𝑇𝑇) < 𝜃𝜃"(𝑃𝑃)  
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, with 𝜃𝜃"(𝑃𝑃) = 𝜃𝜃"(𝐵𝐵) - 𝜉𝜉"(𝑃𝑃) 
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 conditioned to the climate policy shock, which shifts the probability 
distribution of the small productivity shocks and thus the default probability of issuer j:

Thus, assuming that the climate policy shock on fiscal asset is proportional to shock 
on GVA of low-carbon and carbon-intensive sectors i.e. 

𝐴𝐴"(𝑇𝑇)= 𝐴𝐴"(𝑡𝑡) (1+𝜂𝜂"(𝑇𝑇) + 𝜉𝜉"(𝑃𝑃))<	𝐿𝐿"(𝑇𝑇) ⟺ 𝜂𝜂"(𝑇𝑇) < 𝜃𝜃"(𝑃𝑃)  
= 𝐿𝐿"(𝑇𝑇)/𝐴𝐴"(𝑡𝑡) – 1 - 𝜉𝜉"(𝑇𝑇, 𝑃𝑃) 
 
 
𝑞𝑞"(𝑃𝑃) = 𝒫𝒫 (𝜂𝜂" < 𝜃𝜃"(𝑃𝑃)) = ∫ 𝜙𝜙(5)(𝜂𝜂")𝑑𝑑𝜂𝜂"

78(5)
9:;<

 
 
 
∆𝑞𝑞"(𝑃𝑃)= 𝑞𝑞"(𝑃𝑃)	- 𝑞𝑞"(𝐵𝐵) = ∫ 𝜙𝜙?98@𝑑𝑑𝜂𝜂"

78(5)
9:;<

, with 𝜃𝜃"(𝑃𝑃) = 𝜃𝜃"(𝐵𝐵) - 𝜉𝜉"(𝑃𝑃) 
 
 
𝜉𝜉" = 𝜒𝜒"𝑢𝑢",CDEF(P), 
 
 
∆𝑞𝑞"(𝑃𝑃) 
 
 
|𝑢𝑢",CDEF(P)|  
 
 
𝑢𝑢",CDEF(P)<0 

 (P), with elasticity 
the adjustment 

𝐴𝐴"(𝑇𝑇)= 𝐴𝐴"(𝑡𝑡) (1+𝜂𝜂"(𝑇𝑇) + 𝜉𝜉"(𝑃𝑃))<	𝐿𝐿"(𝑇𝑇) ⟺ 𝜂𝜂"(𝑇𝑇) < 𝜃𝜃"(𝑃𝑃)  
= 𝐿𝐿"(𝑇𝑇)/𝐴𝐴"(𝑡𝑡) – 1 - 𝜉𝜉"(𝑇𝑇, 𝑃𝑃) 
 
 
𝑞𝑞"(𝑃𝑃) = 𝒫𝒫 (𝜂𝜂" < 𝜃𝜃"(𝑃𝑃)) = ∫ 𝜙𝜙(5)(𝜂𝜂")𝑑𝑑𝜂𝜂"

78(5)
9:;<

 
 
 
∆𝑞𝑞"(𝑃𝑃)= 𝑞𝑞"(𝑃𝑃)	- 𝑞𝑞"(𝐵𝐵) = ∫ 𝜙𝜙?98@𝑑𝑑𝜂𝜂"

78(5)
9:;<

, with 𝜃𝜃"(𝑃𝑃) = 𝜃𝜃"(𝐵𝐵) - 𝜉𝜉"(𝑃𝑃) 
 
 
𝜉𝜉" = 𝜒𝜒"𝑢𝑢",CDEF(P), 
 
 
∆𝑞𝑞"(𝑃𝑃) 
 
 
|𝑢𝑢",CDEF(P)|  
 
 
𝑢𝑢",CDEF(P)<0 

, the default probability of sovereign j under Climate Policy Shock 
Scenario:

 › Increases with GVA shock magnitude 

𝐴𝐴"(𝑇𝑇)= 𝐴𝐴"(𝑡𝑡) (1+𝜂𝜂"(𝑇𝑇) + 𝜉𝜉"(𝑃𝑃))<	𝐿𝐿"(𝑇𝑇) ⟺ 𝜂𝜂"(𝑇𝑇) < 𝜃𝜃"(𝑃𝑃)  
= 𝐿𝐿"(𝑇𝑇)/𝐴𝐴"(𝑡𝑡) – 1 - 𝜉𝜉"(𝑇𝑇, 𝑃𝑃) 
 
 
𝑞𝑞"(𝑃𝑃) = 𝒫𝒫 (𝜂𝜂" < 𝜃𝜃"(𝑃𝑃)) = ∫ 𝜙𝜙(5)(𝜂𝜂")𝑑𝑑𝜂𝜂"

78(5)
9:;<

 
 
 
∆𝑞𝑞"(𝑃𝑃)= 𝑞𝑞"(𝑃𝑃)	- 𝑞𝑞"(𝐵𝐵) = ∫ 𝜙𝜙?98@𝑑𝑑𝜂𝜂"

78(5)
9:;<

, with 𝜃𝜃"(𝑃𝑃) = 𝜃𝜃"(𝐵𝐵) - 𝜉𝜉"(𝑃𝑃) 
 
 
𝜉𝜉" = 𝜒𝜒"𝑢𝑢",CDEF(P), 
 
 
∆𝑞𝑞"(𝑃𝑃) 
 
 
|𝑢𝑢",CDEF(P)|  
 
 
𝑢𝑢",CDEF(P)<0 

 if 

𝐴𝐴"(𝑇𝑇)= 𝐴𝐴"(𝑡𝑡) (1+𝜂𝜂"(𝑇𝑇) + 𝜉𝜉"(𝑃𝑃))<	𝐿𝐿"(𝑇𝑇) ⟺ 𝜂𝜂"(𝑇𝑇) < 𝜃𝜃"(𝑃𝑃)  
= 𝐿𝐿"(𝑇𝑇)/𝐴𝐴"(𝑡𝑡) – 1 - 𝜉𝜉"(𝑇𝑇, 𝑃𝑃) 
 
 
𝑞𝑞"(𝑃𝑃) = 𝒫𝒫 (𝜂𝜂" < 𝜃𝜃"(𝑃𝑃)) = ∫ 𝜙𝜙(5)(𝜂𝜂")𝑑𝑑𝜂𝜂"

78(5)
9:;<

 
 
 
∆𝑞𝑞"(𝑃𝑃)= 𝑞𝑞"(𝑃𝑃)	- 𝑞𝑞"(𝐵𝐵) = ∫ 𝜙𝜙?98@𝑑𝑑𝜂𝜂"

78(5)
9:;<

, with 𝜃𝜃"(𝑃𝑃) = 𝜃𝜃"(𝐵𝐵) - 𝜉𝜉"(𝑃𝑃) 
 
 
𝜉𝜉" = 𝜒𝜒"𝑢𝑢",CDEF(P), 
 
 
∆𝑞𝑞"(𝑃𝑃) 
 
 
|𝑢𝑢",CDEF(P)|  
 
 
𝑢𝑢",CDEF(P)<0 , and decreases vice ver-

sa;

Is proportional to the GVA shocks on the CPRS (in the limit of small Climate Policy 
Shocks).

𝐴𝐴"(𝑇𝑇)= 𝐴𝐴"(𝑡𝑡) (1+𝜂𝜂"(𝑇𝑇) + 𝜉𝜉"(𝑃𝑃))<	𝐿𝐿"(𝑇𝑇) ⟺ 𝜂𝜂"(𝑇𝑇) < 𝜃𝜃"(𝑃𝑃)  
= 𝐿𝐿"(𝑇𝑇)/𝐴𝐴"(𝑡𝑡) – 1 - 𝜉𝜉"(𝑇𝑇, 𝑃𝑃) 
 
 
𝑞𝑞"(𝑃𝑃) = 𝒫𝒫 (𝜂𝜂" < 𝜃𝜃"(𝑃𝑃)) = ∫ 𝜙𝜙(5)(𝜂𝜂")𝑑𝑑𝜂𝜂"

78(5)
9:;<

 
 
 
∆𝑞𝑞"(𝑃𝑃)= 𝑞𝑞"(𝑃𝑃)	- 𝑞𝑞"(𝐵𝐵) = ∫ 𝜙𝜙?98@𝑑𝑑𝜂𝜂"

78(5)
9:;<

, with 𝜃𝜃"(𝑃𝑃) = 𝜃𝜃"(𝐵𝐵) - 𝜉𝜉"(𝑃𝑃) 
 
 
𝜉𝜉" = 𝜒𝜒"𝑢𝑢",CDEF(P), 
 
 
∆𝑞𝑞"(𝑃𝑃) 
 
 
|𝑢𝑢",CDEF(P)|  
 
 
𝑢𝑢",CDEF(P)<0 

𝐴𝐴"(𝑇𝑇)= 𝐴𝐴"(𝑡𝑡) (1+𝜂𝜂"(𝑇𝑇) + 𝜉𝜉"(𝑃𝑃))<	𝐿𝐿"(𝑇𝑇) ⟺ 𝜂𝜂"(𝑇𝑇) < 𝜃𝜃"(𝑃𝑃)  
= 𝐿𝐿"(𝑇𝑇)/𝐴𝐴"(𝑡𝑡) – 1 - 𝜉𝜉"(𝑇𝑇, 𝑃𝑃) 
 
 
𝑞𝑞"(𝑃𝑃) = 𝒫𝒫 (𝜂𝜂" < 𝜃𝜃"(𝑃𝑃)) = ∫ 𝜙𝜙(5)(𝜂𝜂")𝑑𝑑𝜂𝜂"

78(5)
9:;<

 
 
 
∆𝑞𝑞"(𝑃𝑃)= 𝑞𝑞"(𝑃𝑃)	- 𝑞𝑞"(𝐵𝐵) = ∫ 𝜙𝜙?98@𝑑𝑑𝜂𝜂"

78(5)
9:;<

, with 𝜃𝜃"(𝑃𝑃) = 𝜃𝜃"(𝐵𝐵) - 𝜉𝜉"(𝑃𝑃) 
 
 
𝜉𝜉" = 𝜒𝜒"𝑢𝑢",CDEF(P), 
 
 
∆𝑞𝑞"(𝑃𝑃) 
 
 
|𝑢𝑢",CDEF(P)|  
 
 
𝑢𝑢",CDEF(P)<0 
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5. EMPIRICAL RESULTS

Overall, we consider the combination of two market conditions scenarios with climate 
policy scenarios described in Section 4. The market condition scenarios are reflected in  
the different values of loss-given-default LGD and elasticity.In the mild scenario, LGD = 
0.2 and = 0.2. In the adverse scenario, LGD = 0.4 and = 0.5.

For each scenario combination and IAM, we compute the shock on the value of each 
bond in the holdings’ dataset. The description of the scenarios considered in this exercise 
are provided in the Appendix. We then compute the resulting aggregate shocks on the 
value of the portfolio of each European insurance company (“solo”). We define as port-
folio impact of the climate policy shock the ratio of the value of the portfolio after the 
shock over the initial value before the shock. In a series of boxplots, we study the distri-
bution of the values of the portfolio impact of climate policy shocks under varying levels 
of aggregation. The difference between the median impact and 100% is considered as 
the median shock on the portfolio values.

Notice that three dimensions drive the magnitude of portfolio impact. First, for each sov-
ereign bond negative shocks (e.g. on primary energy fossil sector) can be possibly com-
pensated by positive shocks (e.g. on secondary energy electricity based on renewable 
sources). Second, in a portfolio of sovereign bonds issued by several countries, negative 
aggregate shocks from a less climate-aligned sovereign can be possibly compensated by 
positive shocks from another more climate-aligned sovereign (see also Appendix Table 
A1.3). Third, in some of the figures the results from several models or several scenari-
os are pooled together in one distribution. These three dimensions concur to limit the 
magnitude of the median value of the portfolio impact in the following charts. Further, 
recall that in this application of the CLIMAFIN framework, we do not consider the mac-
ro-economic reverberations of a shock on a given sector. Therefore, the results are to be 
considered as conservative.   

Chart A1.1-2 show the box plots of the portfolio impact distribution across insurance 
holders and IAMs, for selected climate policy scenarios. Chart A1.1 and A1.2 refer, respec-
tively, to the mild and adverse scenario on market conditions. In the mild scenario, the 
first quartile of the distribution varies between 99.6% and 99.8%. In the adverse scenar-
io, the same quantity varies between 98.2% and 99.4%. The median shock in the adverse 
scenario is about 3 times larger than in the mild scenario.
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Figure A1.1: Distribution of impact on sovereign hold-
ings of European insurers across climate policy shock 
scenarios, under the mild scenario on market condi-
tions.

Figure A1.2: Distribution of impact on sovereign 
holdings of European insurers across climate policy 
shock scenarios, under the adverse scenario on market 
conditions.
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Source: EIOPA and own calculations Source: EIOPA and own calculations

Note: Y-axis corresponds to the percentage of the original value of government portfolios (e.g. 100% expresses 0% impact, 97% corresponds to drop of 3%). The 
description of scenarios is provided in Appendix.

Chart A1.3-4 show the box plots of the portfolio impact distribution across holders, estimat-
ed by the model MESSAGE (Krey et al. 2016; Fricko et al. 2017), for selected climate policy 
scenarios. Chart A1.3 and A1.4 refer, respectively, to the mild and adverse scenario on market 
conditions. In the mild scenario, the first quartile of the distribution varies between 99.3% 
and 99.8%. In the adverse scenario, the same quantity varies between 97.4% and 99.0%. 
The median shock in the adverse scenario is again about three times larger than in the mild 
scenario.
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Figure A1.3: Distribution of impact on sovereign 
holdings of European insurers estimated by the model 
MESSAGE across climate policy shock scenarios, under 
the mild scenario on market conditions.

Figure A1.4: Distribution of impact on sovereign 
holdings of European insurers estimated by the model 
MESSAGE across climate policy shock scenarios, under 
the adverse scenario on market conditions.
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Note: Y-axis corresponds to the percentage of the original value of government portfolios (e.g. 100% expresses 0% impact, 97% corresponds to drop of 3%). The descrip-
tion of scenarios is provided in Appendix.

Chart A1.5-6 shows the box plots of the portfolio impact distribution across holders, 
conditioned to the country of the insurance holder, for a given selected climate policy 
scenario, and estimated across all the models in the LIMITS database (Kriegler et al. 2013). 
Chart A1.5 refers to the climate policy scenario RefPol500 and the mild market condition 
scenario. Chart A1.6 refers to the climate policy scenario StrPol450 and the adverse mar-
ket condition scenario. In the mild scenario, the first quartile of the distribution varies 
between 99.3% and 100.0%. In the adverse scenario, thefirst quartile varies between 
96.2% and 99.5%. The median shock in the adverse scenario is about 5 times larger than 
in the mild scenario. Note that we have excluded countries for which the number of ob-
servations did not allow to draw the box plot (i.e. Romania in A1.5, Romania and Iceland 
in A1.6).

Figure A1.5: Distribution of impact on sovereign holdings of European insurers conditioned to the country of the 
holder, across climate policy shock scenarios and under the mild scenario on market conditions.

99.0%

99.5%

100.0%

100.5%

PL HU DE SK BE AT SI UK FI NL EE LV GR IT ES LT DK LU PT FR IE BG MT LI NO HR CZ CY SE IS

Source: EIOPA and own calculations
Note: Y-axis corresponds to the percentage of the original value of government portfolios (e.g. 100% expresses 0% impact, 97% corresponds to drop of 3%). The descrip-
tion of the scenarios is provided in Appendix.
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Figure A1.6: Distribution of impact on sovereign holdings of European insurers conditioned to the country of the 
holder, across climate policy shock scenarios and under the adverse scenario on market conditions.
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Source: EIOPA and own calculations
Note: Y-axis corresponds to the percentage of the original value of government portfolios (e.g. 100% expresses 0% impact, 97% corresponds to drop of 3%). The descrip-
tion of the scenarios is provided in Appendix.

The results of this analysis should be considered as conservative for the following rea-
sons. First, since global GHG emissions are still increasing (WMO 2019) and countries 
are not aligning their policies to their climate pledges, stricter climate policies might be 
introduced. Second, the IAMs’ policy scenarios that we considered were defined before 
the Paris Agreement. Thus, tighter policy scenarios are likely to be needed to achieve the 
2°C target. Further, it must be noticed that the energy technology shocks (both on fossil 
and renewable energy sources) vary considerably across the IAMs used, for the same 
regions and countries considered. Finally, we should consider investors’ sentiments, i.e. 
the expectations about changes in (even few decimal points) in GVA and GDP growth 
could impact sovereign bonds’ yields.

6.  CONCLUSION

In this analysis, we have developed the first climate transition risk assessment of the sov-
ereign bonds’ portfolios of solo insurance companies in Europe under deep uncertainty. 
This is the result of the first collaboration between, climate economics modellers, climate 
financial risk scholars and researchers from a public authority with a mandate to contrib-
ute to financial stability. We opted for the CLIMAFIN framework by Battiston et al. (2019) 
because it is the first and transparent approach that combines 1) forward-looking climate 
transition risk shocks obtained from climate economic models that are the reference for 
scientific community and the IPCC (in this context, the LIMITS IAMs) with; 2) climate 
financial risk metrics and methods that are now a reference in both the academic and 
practitioners’ community (Battiston et al., 2017). In particular, the CLIMAFIN approach 
allows to embed forward-looking climate transition risk scenarios (i.e. a disorderly intro-
duction of climate policies that cannot be fully anticipated and priced in by insurers) in 
the valuation of counterparty risk, in the probability of default of individual sovereign 
bonds and largest losses on investors’ portfolios (Battiston et al., 2019).
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In this application, we have considered a  simple financial pricing model for zero and 
multi-coupon sovereign bonds adjusted for climate policy shock scenarios. This allows 
to compute an adjusted value of bonds’ portfolios in order to assess how future climate 
transition risk could affect the probability of default of individual sovereign bonds, the 
financial solvability of the sovereign and the performance of European insurers who are 
exposed to those bonds. The analysis uses the solo data of insurers from 31 countries in 
EU/EEA that reported Solvency II data at the end of 2018, including all insurers’ invest-
ments into sovereign bonds, complemented by information on the characteristics of the 
bonds available from the CSDB.

Our results show that the potential impact of a disorderly low carbon transition on in-
surers portfolios of sovereign bonds is moderate in terms of its magnitude. However, it 
is non-negligible in several feasible scenarios. Overall, it emerges that the climate policy 
transition path chosen, and the role of fossil fuels and renewable energy technologies in 
the sovereign’s GVA and fiscal revenues, can considerably affect the fiscal and financial 
risk position of a country, via the change in the probability of default (PD) and in the val-
ue of the sovereign bonds and the Climate Spread. In general, countries that have already 
started to align their economy to the low-carbon transition (and thus where renewable 
energy technologies play a larger role on its GVA and fiscal revenues) face a decrease in 
the PD and in the Climate Spread, and thus better refinancing conditions. In contrast, 
countries whose GVA is carbon intensive would face an increase in the PD and in the 
Climate Spread.

This, in turn, could have relevant implications for the financial risk profile of the insurers 
who own sovereign bonds of countries that are misaligned to the low-carbon transition 
and the climate targets. Thus, it would be in the interest of insurers’ supervisors to ex-
tend this climate financial risk pricing exercise (ideally in a climate stress-test exercise, 
see e.g. Battiston et al., 2017) for financial risk monitoring and assessment purposes.
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APPENDIX

CLIMATE POLICIES SCENARIOS LIMITS. 

In this exercise we consider the scenarios elaborated by the international scientific con-
sortium LIMITS. This is a database of economic trajectories that are consistent with 10 
climate transition scenarios. The main features of climate mitigation are the following:

 › The level of ambition in emission reduction in the near-term (2020):

 ¡ reference policy ‘weak’ corresponds to unconditional Copenhagen Pledges; 
more ‘stringent’ based on conditional Copenhagen Pledges.

 › The level of ambition in emission reduction in the long-term (2100):

 ¡ either no target or concentrations targets of 450 and 500 ppm CO2-eq, corre-
sponding to high chances of achieving 2°C

 › The level of international cooperation until 2020 and 2030:

 ¡ no cooperation, fragmented action, coordinated action.

Table A1.2: LIMITS scenarios’ characteristics.

Scenario 
class

Scenario name Scenario 
type

Level of 
ambition 
(near term)

Level of 
ambition 
(long term)

Level of 
international 
cooperation

No policy Base Baseline None N/A None

Fragmented 
action

RefPol Reference Weak 2100 None

StrPol Reference Stringent 2100 None

Immediate 
action

450 Benchmark None N/A 450 ppm

500 Benchmark None N/A 500 ppm

Delayed 
Policy

RefPol-450 Climate 
Policy

Weak 2020 450 ppm

Delayed 
Policy

StrPol-450 Climate 
Policy

Stringent 2020 500 ppm

Delayed 
Policy

RefPol-500 Climate 
Policy

Weak 2020 500 ppm

Delayed 
Policy

StrPol-500 Climate 
Policy

Stringent 2020 500 ppm

Delayed 
Action

RefPol2030-500 Climate 
Policy

Weak 2030 501 ppm

Source: Table based on: E. Kriegler, M. Tavoni, T. Aboumahboub, G. Luderer, K. Calvin, G. De Maere, V. Krey, K. Riahi, H. 
Rosler, M. Schaeffer, D. van Vuuren (2013): Climate Change Economics 4(4), doi: 10.1142/S2010007813400083.

We consider the trajectories computed under 6 Integrated Assessment Models (AIM-En-
duse, GCAM, IMAGE, MESSAGE, REMIND, and WITCH). More information is available 
at: https://tntcat.iiasa.ac.at/LIMITSDB/dsd?Action=htmlpage&page=about#tutorial
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CLIMATE POLICIES SCENARIO LIMITS REDPOL-450 MILD 
COMPUTED WITH THE IAM MESSAGE

The following table provides simple average of results of shock for the scenario LIMITS 
RedPol-450 mild computed with the IAM MESSAGE aggregated by bond issuers and 
their residual maturities. The sovereigns that were not sufficiently represented across dif-
ferent residual maturities were excluded from the table. As sovereign bonds that are held 
by insurers in their investment portfolios could have different parameters, the obtained 
results were smoothed out using estimated linear trends. In this way the results could 
be generated even for residual maturities that were not available in our data sample. The 
following table could be used as an illustrative example how to integrate forward-look-
ing climate transition in a bottom up insurance stress test. The climate shocks could be 
then combined with other shocks, e.g. market shocks prescribed in the given stress test 
scenario.

Table A1.3: Average impact of scenario LIMITS RedPol-450 mild computed by IAM 
MESSAGE for different sovereigns and residual maturities 

1 2 3 4 5 6 7 8 9 10 15 20

Austria -0.31% -0.33% -0.35% -0.37% -0.38% -0.40% -0.42% -0.44% -0.46% -0.48% -0.57% -0.66%

Belgium -0.24% -0.27% -0.29% -0.31% -0.34% -0.36% -0.38% -0.41% -0.43% -0.45% -0.57% -0.68%

Denmark -0.07% -0.10% -0.13% -0.16% -0.19% -0.22% -0.25% -0.29% -0.32% -0.35% -0.50% -0.65%

Finland -0.07% -0.11% -0.15% -0.19% -0.23% -0.27% -0.31% -0.35% -0.39% -0.42% -0.62% -0.82%

France -0.32% -0.34% -0.37% -0.39% -0.42% -0.45% -0.47% -0.50% -0.52% -0.55% -0.67% -0.80%

Germany -0.12% -0.19% -0.25% -0.31% -0.38% -0.44% -0.50% -0.56% -0.63% -0.69% -1.00% -1.32%

Greece -0.26% -0.27% -0.27% -0.28% -0.28% -0.29% -0.30% -0.30% -0.31% -0.31% -0.34% -0.37%

lceland 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

lreland -0.01% -0.07% -0.13% -0.18% -0.24% -0.30% -0.36% -0.42% -0.48% -0.54% -0.83% -1.12%

ltaly -0.22% -0.2.3% -0.25% -0.26% -0.27% -0.29% -0.30% -0.31% -0.33% -0.34% -0.40% -0.47%

Luxembourg -0.02% -0.04% -0.07% -0.09% -0.12% -0.14% -0.16% -0.19% -0.21% -0.24% -0.36% -0.48%

Netherlands -0.10% -0.20% -0.30% -0.40% -0.50% -0.60% -0.70% -0.80% -0.90% -1.00% -1.49% -1.99%

Norway -0.01% -0.01% -0.02% -0.02% -0.02% -0.03% -0.03% -0.04% -0.04% -0.04% -0.06% -0.08%

Poland -0.74% -0.73% -0.72% -0.71% -0.70% -0.69% -0.68% -0.67% -0.66% -0.65% -0.60% -0.54%

Spain -0.18% -0.21% -0.25% -0.28% -0.32% -0.35% -0.39% -0.42% -0.46% -0.49% -0.67% -0.84%

Sweden -0.02% -0.02% -0.02% -0.01% -0.01% -0.01% -0.01% 0.00% 0.00% -0.01% 0.00% 0.01%

United Kingdom -0.33% -0.28% -0.23% -0.18% -0.12% -0.40% -0.44% -0.47% -0.50% -0.53% -0.69% -0.85%

Switzerland -0.24% -0.28% -0.31% -0.34% -0.37% -0.07% -0.02% 0.00% 0.00% 0.14% 0.40% 0.66%

United States -0.13% -0.13% -0.14% -0.14% -0.15% -0.16% -0.16% -0.17% -0.18% -0.18% -0.22% -0.25%

Source: EIOPA and own calculations
Note: The columns represent residual maturities. The obtained results were smoothed out cross residual maturities using 
estimated linear trends.
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A B S T R A C T   

The economic risk of the carbon footprint of the Bitcoin network remains unexplored. We develop 
the real-time artificial price for the carbon footprint of the Bitcoin network and thereby extend 
the climate value at risk (VaR) into the climate expected shortfall (ES) by employing both 
parametric and semiparametric models. On the basis of the best-fitted climate VaR and ES esti-
mations, we find that the 95th percentiles (upper bound) of the climate VaR and ES are 8.04 and 
10.37 billion euros, respectively, and the 99th percentiles (upper bound) of climate VaR and ES 
are 11.33 and 14.15 billion euros, respectively. Moreover, given the climate VaR and ES esti-
mations on the basis of similar carbon footprint, the negative environmental externality of the 
Bitcoin network based on the current carbon price is not sufficient to reflect the environmental 
cost. Overall, our research provides new insight into the linkage between the Bitcoin network and 
the environment, which will provide meaningful information for both investors and 
policymakers.   

1. Introduction 

The climate value at risk (VaR) is a risk measure for estimating the amount of loss due to climate change within a firm, portfolio, or 
financial market within a specific investment horizon. The pioneering work of Dietz et al. (2016) quantifies the climate VaR of global 
financial assets by calculating the present value of losses in global financial assets under different climate change scenarios. When the 
discounted cash flow model of corporate finance is adopted, the 99th percentile climate VaR is 24.2 trillion USD without cutting carbon 
emission and 13.2 trillion USD when limiting climate change to under 2 ◦C. Although Dietz et al. (2016) provide the intuitive landscape 
of the climate VaR in the financial market, the climate VaR highly depends on assumptions and parameter settings. 

Introduced by Nakamoto (2008), the Bitcoin network is becoming a new infrastructure of the financial system as a private, 
decentralized, and secure digital asset in the blockchain network. Bitcoin is not only challenging the dominance of the traditional 
payment system but is also highly sought after as an alternative financial investment. Currently, the market cap of Bitcoin is 158 billion 
USD, with a daily trading volume of 44 billion USD on February 28, 2020. However, Bitcoin is carbon intensive and consumes 
enormous computational and electric power, with an annual carbon footprint of approximately 36,937 kilotons; this is comparable to 
the annual carbon footprint of New Zealand (Stoll et al., 2019). In addition, the 2019 annual aviation allowances cap of carbon 
emission for the EU Emissions Trading System (EU ETS) was approximately 35,173 kilotons. Thus, the annual carbon footprint of the 
Bitcoin network is almost similar to that of the European aviation industry. In this paper, we extend the climate VaR to the climate 
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expected shortfall (ES) by employing the real-time artificial carbon price to evaluate the economic cost of the carbon intensity of the 
Bitcoin network. 

To understand the economic cost of the Bitcoin network’s impact on the environment, we develop the artificial carbon price of the 
Bitcoin network by using the Cambridge Bitcoin Electricity Consumption Index (CBECI), the weighted average carbon intensity of the 
Bitcoin network (CIBN), and the price of the EU ETS carbon emission allowance (EUA). First, we use CBECI to measure the real-time 
electricity consumption of the Bitcoin network. Second, following the study conducted by Stoll et al. (2019), we employ the weighted 
average carbon intensity of the Bitcoin network to calculate real-time carbon emission as the product of CBECI and CIBN. Third, we 
calculate the real-time carbon market cap by multiplying the real-time carbon emission by the price of carbon emission allowance. 
Finally, we obtain the unit real-time carbon price of Bitcoin (UCB) by dividing the real-time carbon market cap by the real-time number 
of bitcoins. Therefore, the UCB acts as a direct real-time estimate of the environmental cost of the Bitcoin network. 

Furthermore, the environmental cost of the Bitcoin network has been estimated in the previous literatures. For example, Mora et al. 
(2018) and Foteinis (2018) suggest that the Bitcoin network alone is capable of pushing global warming to beyond +2 ◦C. However, 
Masanet et al. (2019) argue against the projections of Mora et al. and demonstrate that the projections of Bitcoin CO2 should be lower 
after errors in adoption scenarios are corrected. Köhler and Pizzol (2019) estimate the environmental impact of Bitcoin mining and 
reveal that the carbon footprint of Bitcoin mining was 17.29 MtCO2 in 2018. The findings demonstrate that the energy consumption 
and environmental footprint produced per bitcoin mined is expected to decrease as the hashrate increases. Nevertheless, Krause and 
Tolaymat (2018) argue that the carbon cost is still a major concern considering that the network hashrate and energy consumption for 
cryptocurrency mining will continue to increase. However, these studies consider only the energy consumption or carbon footprint of 
the Bitcoin network; they do not measure economic losses incurred under extreme climate change conditions. To fill this gap, we 
estimate the climate VaR of the Bitcoin market to measure the external economic cost of its carbon footprint. 

In practice, Morgan Stanley Capital International has already provided climate VaR solutions for various financial products. In 
academia, by estimating climate beta, Dietz et al. (2018) provide additional evidence of a positive relationship between climate 
damages (beta) and consumption risk in the economy. Monasterolo and De Angelis (2020) demonstrate that stock market investors 
began to demonstrate a preference for low-carbon investments after the Paris Agreement. As a new infrastructure of the financial 
market, the Bitcoin investment should appeal to the low-carbon preference of investors. Given the increasing importance of the Bitcoin 
network in the financial system and the critical environmental concerns it raises, understanding the climate VaR and ES of the Bitcoin 
market is crucial. Thus, our study extends the literature by developing real-time estimates of climate VaR and ES for the Bitcoin market 
under extreme climate change conditions. 

Moreover, similar to the VaR, the ES is an extreme risk measure recommend by the Basel III to be used instead of VaR and has been 
internationally adopted by investors, risk managers, and banking supervisors and regulators. In the current study, climate ES measures 
the weighted average of the “extreme” loss due to climate change beyond the climate VaR cutoff point. Our UCB may exhibit some 
extreme price movements; therefore, understanding the climate ES may enable more accurate estimation and forecasting of climate 
change risk, especially in cases of extreme risk. Moreover, because we employ the real-time data of UCB, the climate ES can be 
estimated on the basis of the distribution of the climate VaR. In contrast to Dietz et al. (2016), we employ an accurate model for 
distribution and conditional volatilities to estimate the dynamic climate VaR and ES. Thus, our study extends the literature by 
developing real-time estimates of climate VaR and ES for the Bitcoin market under extreme climate change conditions. 

Methodically, three types of approaches are applied to estimate the VaR and ES: parametric, nonparametric, and semiparametric 
approaches. The generalized autoregressive conditional heteroscedastic (GARCH) model (Bollerslev, 1986) as the cornerstone of the 
parametric models in VaR and ES measurements, has been widely extended by incorporating various types of distributions (e.g., Ardia 
et al., 2018; Aloui and Mabrouk, 2010; Lyu et al., 2017; Tolikas, 2014). However, the accuracy of VaR and ES estimations depends on 
the best-fitted distribution, which varies with the type of financial assets. Usually, three types of distributions function well—normal 
distribution, Student’s or skewed Student’s t distribution (SKT), and empirical distribution. Therefore, we consider all three of these 
distributions in our estimations of the climate VaR and ES. 

By contrast, the nonparametric approach relaxes the assumptions on distribution and parameter settings. Engle and Manganelli 
(2004a) estimate the VaR directly on the basis of quantiles, which is referred to as nonparametric conditional autoregressive VaR 
(CAViaR) estimates. By incorporating the asymmetric Laplace (AL) distribution into CAViaR, Chen et al. (2012) extend the CAViaR 
model to a semiparametric nonlinear model; however, this extended model still fails to estimate the ES directly. Taylor (2017) provides 
the first evidence that dynamic VaR and ES measures can be estimated jointly by incorporating a time-varying density scale into an AL 
distribution. Fissler and Ziegel (2016) further extend the AL log-likelihood function to a family of joint loss functions, providing 
consistent VaR and ES estimations. Through a semiparametric approach combining the Fissler–Ziegel (FZ) loss function with the 
generalized autoregressive score (GAS) framework, Patton et al. (2019) develop new dynamic VaR and ES models. 

The semiparametric approach provides better estimation and forecasting for dynamic VaR and ES. The UCB exhibits properties of 
not only financial data (EUA), such as nonstationary, fat-tail, and heteroscedasticity (Lyu et al., 2017; Yuan and Yang, 2020), but also 
economic data (CBECI), such as serial correlation, seasonality, and cyclicity (Krause and Tolaymat, 2018; Li et al., 2019); this makes 
the parametric models insufficient for describing the complexity of UCB’s properties. To obtain accurate climate VaR and ES esti-
mations, we also use three semiparametric models proposed by Patton et al. (2019): GARCH-FZ, DCS, and hybrid models. Through a 
comparison of the average forecast loss of parametric and semiparametric models and their goodness-of-fit, our study not only esti-
mates the climate VaR and ES in the Bitcoin market but also examines the goodness-of-fit of parametric and semiparametric models in 
forecasting the climate VaR and ES. 

Our findings reveal that the semiparametric models may not always work best on climate VaR and ES estimation and forecasting, 
especially for the 99th percentile. Specifically, for upper bound and best-guess estimates of UCB, GARCH-FZ and GARCH-EDF models 
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are suitable for the 95th and 99th percentile climate VaR and ES, respectively. For the lower bound estimate of UCB, the GARCH-SKT 
model is suitable for both percentiles. Overall, we find increasing climate VaR and ES since 2014 and a notable surge in 2019. Spe-
cifically, the 95th percentile climate VaR is 8.04 billion euros, which is similar given the same carbon footprint. Moreover, we find that 
the lower bound and best-guess climate VaR and ES are farther from the actual economic value of carbon emissions of the Bitcoin 
network compared with the estimation based on the study by Dietz et al. (2016). However, the 99th percentile climate VaR did not 
provide the same results, which is 11.33 billion euros—less than half of that estimated by Dietz et al. (2016). 

Our paper makes the following three contributions to the literature. First, our study provides a direct bridge between the envi-
ronment and the Bitcoin network by quantifying the climate VaR and ES, thus helping us to understand the economic cost of the 
environmental externality of the Bitcoin network. In contrast to other studies, our analysis provides various data-based estimates of the 
climate VaR and ES across different stress scenarios, thus improving the analysis robustness. Second, we provide real-time dynamic 
climate VaR and ES estimates to understand the dynamic environmental cost of the Bitcoin network since 2014, which will help in-
vestors and policymakers in developing a real-time alarm system to evaluate the environmental impact of the Bitcoin network. Third, 
we propose the climate ES to measure the economic value of the environmental cost of the Bitcoin network under extreme conditions, 
which further helps us to capture the negative externality of the Bitcoin network under extreme conditions. Additionally, to enhance 
the comprehensiveness of our analysis, we examine the suitability of recent semiparametric models for estimating the dynamic climate 
VaR and ES. This paper is the first to describe the dynamic climate VaR and ES of the Bitcoin market from both financial and envi-
ronmental perspectives. 

The remainder of the paper proceeds as follows. Section 2 describes the methods applied, including parametric and semiparametric 
models, to forecasting the VaR and ES, along with its estimation methodology. Section 3 presents the descriptive statistics of data and 
the preliminary analysis. Section 4 summarizes the in-sample estimates and out-of-sample forecasts of the climate VaR and ES along 
with measurement comparison and robustness evaluation. Section 5 presents conclusions and a discussion of policy implications and 
future research directions. 

2. Methodology 

2.1. Parametric models 

In this section, we follow the standard GARCH(1,1) model (Bollerslev, 1986) to describe the volatility of the returns series (rt) of 
artificial carbon prices. The mean equation and conditional volatility functions are as follows: 

rt = μ+ εt, εt = σtηt (1)  

σ2
t = ω+ γε2

t− 1 + βσ2
t− 1 (2)  

where μ and σt denote the mean and conditional volatility, respectively, of the GARCH model, and ηt denotes the standardized residual 
following the three proposed distributions: normal distribution, SKT (Hansen, 1994), and empirical distribution: 

ηt iidN(0, 1), ηt iidSkewt(0, 1, θ, ϑ). (3) 

These distributions have been widely used in the literature (Aloui and Mabrouk, 2010; Lyu et al., 2017). When the skewness 
parameter ϑ of SKT equals zero, it returns to the standard Student’s distribution. Therefore, we refer to these three types of parametric 
models (normal distribution, SKT, and empirical distribution) as GARCH-N, GARCH-SKT, and GARCH-EDF, respectively. In particular, 
even though the empirical distribution function is estimated using a nonparametric approach, we estimate the GARCH model para-
metrically. We still consider GARCH-EDF as a parametric model. However, the empirical distribution function has been proven to be 
the best model for the ES (Engle and Manganelli, 2004b), which is another reason to include it in our analysis. Therefore, we consider 
these three types of distributions as the benchmarks for comparison with semiparametric models. 

2.2. Semiparametric models 

Following the studies of Patton et al. (2019), we consider three types of semiparametric models to estimate the dynamic volatility of 
the returns series. The first is the GAS one-factor model, also referred to as the DCS model (Thiele, 2019), which is defined as follows: 

κt = ω+ βκt− 1 + γst− 1, st = Htηt = [Et− 1(−
∂2lnLt

∂κ2
t
)]

− 1∂lnLt

∂κt
(4)  

where Ht denotes the rescale term of the innovations and the log-likelihood lnLt is time dependent. 
The second model incorporates the FZ loss minimization to estimate the GARCH model without considering the mean-reverting 

process and is referred to as the GARCH-FZ model. Following the study of Francq and Zakoïan (2015), the GARCH (1,1) model in 
Section 2.1 can be rewritten as: 

σ2
t = ω+ γr2

t− 1 + βσ2
t− 1, rt = σtηt (5) 

Similarly, the conditional volatility parameter σtfollows the GARCH process. 

L. Yang and H. Xu                                                                                                                                                                                                    



Climate Risk Management 32 (2021) 100310

4

The third model is a hybrid of the DCS and GARCH-FZ models, specified as follows: 

κt = ω+ βκt− 1 + γst− 1 + + δlog|rt− 1|, rt= exp{κt}ηt (6)  

where the log-volatility κt is the latent variable. The log absolute return is employed to ensure the linear evolution of κt. 

2.3. VaR and ES 

Following the standard definitions of the VaR and ES, we can specify the VaR and ES as risk measures for a given time horizon as 
follows: 

VaRα
t = F− 1

t (α), ESα
t = E(rt|

(
rt ≤ VaRα

t

)
,Ft− 1), rt|Ft− 1 Ft (7)  

where the left-tailed quantile α is set as 0.05. The conditional distribution Ft is based on the rt. For the parametric models, we specified 
the VaR (vt) and ES (et) as 

vt = μ+ aσt, et = μ+ bσt (8)  

where b < a < 0, b = E(ηt |ηt ≤ a), and a = F− 1
ηt

(α). Similarly, for the GARCH-FZ model, vt and et are driven by the volatilityσt given the 
mean equation rt = σtηt: 

vt = aσt, et = bσt (9) 

For both DCS and hybrid models, the VaR and ES are driven by the latent variable of log-volatility κt: 

vt = aexp{κt}, et = bexp{κt} (10) 

By incorporating the FZ loss function into the evolution equation of κt, we can rewrite Eq. (4) as follows: 

st ≡
1

et− 1
(
1
α 1{rt− 1 ≤ vt− 1}rt− 1 − et− 1) (11)  

where vt denotes VaRt, and et denotes ESt. As suggested by Creal et al. (2013) and Patton et al. (2019), vt and et can be identified by the 
FZ loss function, whereas the parameters ω, β, and γ in Eqs. (4) and (6) are governed by the GAS process: 

κt = ω+ βκt− 1 + γ
1

et− 1
(
1
α 1{Rt− 1 ≤ ϕt− 1}Rt− 1 − et− 1) (12)  

where the FZ loss function only identifies ϕt and et, whereas the generalized autoregressive process determines the parameters ω, β, 
and γ. For simple identification, we set ω to zero. 

2.4. Estimation methodology 

We construct the FZ loss functions to minimize the expected loss of the scoring functions G1 and G2 to derive the climate VaR and 
ES: 

(VaRt,ESt) = argmin
(v,e)

Et− 1[LFZ(r, v, e; α,G1,G2)]. (13)  

where the true VaR and ES are represented by the information set, Xt− 1 ∈ F t− 1. Hereby, the elicitability problem of the ES measure is 
addressed by the scoring function to provides the true VaR and ES. Therefore, we can reconstruct Eq. (12) as follows: 

(VaRt,ESt) = argmin
(θ)

Et− 1[LFZ(rt, v(Xt− 1; θ), e(Xt− 1; θ); α)] (14) 

The parameters θ can be accurately estimated using asymptotic theory for (non-) linear models (Patton et al., 2019). Moreover, 
because the semiparametric VaR and ES estimates do not depend on the assumptions of distribution and regularity conditions, it is 
possible to compare semiparametric VaR and ES estimates with parametric VaR and ES estimates. 

3. Data and preliminary analysis 

To estimate the externality or environmental cost of the Bitcoin network, we first must capture the carbon footprint of Bitcoin. We 
employ the CBECI to measure how much electricity is consumed by the Bitcoin network. Second, as suggested by Stoll et al. (2019), the 
weighted average CIBN is estimated at 480–500 g CO2 per kWh. For simplicity, we consider the weighted average CIBN to be 500 g CO2 
per kWh. Therefore, we can estimate the annualized carbon intensity of the Bitcoin network by multiplying the CBECI by the CIBN. 
Finally, to evaluate the economic value of the externality or environmental cost of the Bitcoin network, we employ the daily spot price 
of carbon emission allowance in the EU ETS. We retrieve the daily closing price of carbon emission allowance from Datastream. 
Therefore, the total annualized carbon market cap or externality of the Bitcoin network can be estimated by multiplying these three 
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values. We estimate the UCB by dividing the daily number of bitcoins (NUM). Accordingly, we have: 

UCB = CBECI × CIBN × EUA/NUM (15) 

The sample period is from December 1, 2014, to February 28, 2020. The starting point is based on the time at which the CBECI first 
became available. The plots provide upper bound (UBD), lower bound (LBD), and best-guess (GUS) estimates of artificial carbon price 
(left side) and its returns (right side) for the Bitcoin network. The unit is euros per unit of Bitcoin. Therefore, the returns of UCB for 

Fig. 1. The plots of upper bound, lower bound, and guess artificial carbon price and its returns for the Bitcoin network. The unit is Euro per one unit 
of Bitcoin. The sample period is from December 2, 2014 to February 28, 2020. 

Table 1 
The descriptive statistics of upper bound, lower bound, and guess artificial carbon returns (%).   

UBD LBD GUS 

Mean 0.374 0.287 0.339 
Median 0.401 0.421 0.387 
Maximum 35.508 22.129 22.129 
Minimum − 25.350 − 35.111 − 20.842 
Std. Dev. 4.638 4.228 3.970 
Skewness 0.176 − 1.129 − 0.134 
Kurtosis 9.471 11.792 6.392 
Jarque-Bera 2395.713*** 4700.526*** 660.461*** 

LB (20) 0 0 0 
Observations 1369 1369 1369 

Notes: Jarque-Bera denotes the p-value from Jarque-Bera test. LB(20) denotes the Ljung–Box autocorrelation test of returns with a 
lag length of 20, in which the p-value is provided. UBD, LBD and GUS denotes upper bound, lower bound, and guess acritical 
carbon returns, respectively. 
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these estimates are calculated as: 

ri,t = log
(

UCBi,t

UCBi,t− 1

)

, i ∈ {UBD,LBD,GUS} (16) 

We plot the carbon price for each bitcoin in Fig. 1. Because the CBECI provides upper bound, lower bound, and best-guess electricity 
consumption, we have included upper bound, lower bound, and best-guess artificial carbon prices, respectively. Fig. 1 (left side) 
displays a significant surge of carbon price, mainly due to a sharp increase in the marginal mining cost of Bitcoin (Li et al., 2019) along 
with a surge in carbon price (Yuan and Yang, 2020), which also implies an increase in the CIBN. From the results of a marginal cost 
analysis, Hayes (2019) indicates that the market price of Bitcoin is supported by the marginal cost of production, except for the bubble 
period from the fall of 2017 to early 2018. Overall, the externality of the Bitcoin network is increasing with time. Fig. 1 (right side) also 
illustrates the log-returns of the carbon price for these three estimates of the Bitcoin network. Clearly, all these returns demonstrate the 
volatility clustering process. Furthermore, we report the descriptive statistics of prices and their returns in Table 1. In particular, the 
returns series begins in December 2, 2014, because the initial value serves as the basis for calculating returns. 

The mean returns for upper bound, lower bound, and best-guess carbon price are 0.374%, 0.287%, and 0.339%, respectively 
(Table 1), which are consistent with the initial settings. However, when the standard deviations are considered, the lower bound 
carbon returns are higher than the best-guess carbon returns. Moreover, the skewness and kurtosis of the lower bound carbon return 
are highest among these threes, which indicates that extreme returns are more likely to occur. The negative skewness also suggests a 
greater tendency for extreme positive returns in the lower bound and best-guess carbon prices. Along with the Jarque–Bera test and the 
Ljung–Box autocorrelation test, all properties of the returns series suggest nonnormal, fat-tail, and heteroscedastic distribution. Thus, 
with the adoption of the GARCH and DCS models to estimate the volatilities of the return series, our analysis can provide more robust 
results for estimating the climate VaR and ES. 

Table 2 
The estimations of parametric and semi-parametric models for upper bound artificial carbon returns.   

GARCH GARCH-FZ DCS Hybrid 

μ  0.847 (0.213)***    

ω  0.040 (0.006) ***   0.000 (0.000) *** 

γ  0.035 (0.039) *** 0.080 (0.012)*** 0.014 (0.001)*** 0.009 (0.003) *** 

β  0.963 (0.257) *** 0.862 (0.017)*** 0.941 (0.009)*** 0.942 (0.009)*** 

θ  6.247 (1.025) ***    

ϑ  − 0.037 (0.095)    
a  − 1.114 (0.351)*** − 4.615 (2.239)** − 4.604 (6.618) 
b  − 1.601 (0.457) ** − 6.802 (3.351)** − 6.717 (9.973) 
AVL  1.987 1.944 1.943 
LB2 (20) 0.207 0.211 0.295 0.231 

Notes: LB2(20) denotes the Ljung–Box autocorrelation test of squared standardized residuals with a lag length of 20, in which the p-value is provided. 
AVL denotes the average loss. 

** denotes the significant at the 5% level. 
*** denotes the significant at the 1% level. 

Table 3 
The estimations of parametric and semi-parametric models for lower bound artificial carbon returns.   

GARCH GARCH-FZ DCS Hybrid 

μ  − 0.0135 (0.019)    
ω  5.172 (1.134) ***   0.000 (0.064) 
γ  0.093 (0.021) *** 0.290 (0.361) 0.036 (0.001) *** 0.036 (0.007)*** 

β  0.829 (0.103) *** 0.629 (0.176) *** 0.782 (0.089) *** 0.775 (0.088) *** 

ν  5.251 (0.895) ***    

λ  − 0.077 (0.091)    
a  − 1.528 (1.575) − 5.676 (4.797) − 5.681 (3.315) 
b  − 2.106 (2.139) − 7.986 (7.670) − 8.041 (5.378) 
AVL  2.113 2.074 2.073 
LB2 (20) 0.582 0.175 0.102 0.107 

Notes: LL denotes the log likelihood. LB2(20) denotes the Ljung–Box autocorrelation test of squared standardized residuals with a lag length of 20, in 
which the p-value is provided. AVL denotes the average loss. 

*** denotes the significant at the 1% level. 
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4. Empirical results 

4.1. Parametric and semi-parametric estimations 

For this analysis, we use the sample period from December 2, 2014, to February 28, 2017, for in-sample estimations for the dis-
tribution of both parametric and semiparametric models. Therefore, our out-of-sample period is from March 1, 2017, to February 28, 
2020, with 783 observations. Table 2 presents the in-sample estimations of parametric and semiparametric models for upper bound 
carbon return. The first column presents the estimation of the parametric GARCH model. The estimated β parameter is 0.963, implying 
a high persistence of the GARCH processes. However, we do not identify a significant skewness in the standardized residual because the 
skewness parameter ϑ is insignificant and has a negative value. 

The following three columns provide the estimations of semiparametric models. The empirical results for the GARCH-FZ, DCS, and 
hybrid models are presented in the first, second, and third columns, respectively. Specifically, we construct the hybrid model by 
incorporating a GARCH-type forcing variable (σ) with a value significantly higher than 0.85 into an augmented DCS model. Thus, the 
GARCH process is essential in modeling the return under the semiparametric models. Moreover, the persistence parameter β is sig-
nificant with a value close to 1, implying similar persistence to that of the GARCH model. Similarly, the latent log-volatility variable is 
significant, with a value close to 1, suggesting similar persistence to that of the DCS model. 

Tables 3 and 4 report the parameter estimations for lower bound and best-guess carbon returns. The parameter estimations of best- 
guess carbon returns exhibit a degree and significance similar to those of upper bound carbon returns. By contrast, the parameter 
estimations of lower bound carbon returns have a considerably lower degree of β, especially for the semiparametric models. From an 
evaluation of the average loss in the semiparametric models, we discover that the hybrid models are slightly better than the other two 
models in estimating upper bound and lower bound carbon returns, whereas the GARCH-FZ model is slightly better than the other two 
models in estimating best-guess carbon returns. Moreover, in the last column, we provide the results of the Ljung–Box autocorrelation 
test of squared standardized residuals, which suggest that our models are capable of addressing heteroscedasticity. 

4.2. Performance evaluations 

In this section, we employ out-of-sample VaR and ES forecasts to validate the fitness between the parametric and semiparametric 
models. For simplicity, we discuss only the results for which α = 0.05. As mentioned, we choose the best-fitted model to measure the 

Table 4 
The estimations of parametric and semi-parametric models for guess artificial carbon returns.   

GARCH GARCH-FZ DCS Hybrid 

μ  0.129 (0.022) ***    

ω  6.690 (1.623) ***   0.000 (0.010) 
γ  0.027 (0.016) 0.016 (0.018) 0.007 (0.008) 0.025(0.017) 
β  0.970 (0.103) *** 0.945 (0.079) *** 0.961 (0.060) *** 0.963 (0.035) *** 

ν  6.689 (1.235) ***    

λ  − 0.074 (0.084)    
a  − 2.579 (1.599) ** − 5.18 (22.448) − 3.705 (18.678) 
b  − 3.760 (1.591) *** − 8.034 (31.990) − 5.522 (28.599) 
AVL  2.032 2.058 2.041 
LB2 (20) 0.215 0.575 0.412 0.200 

Notes: LL denotes the log likelihood. LB2(20) denotes the Ljung–Box autocorrelation test of squared standardized residuals with a lag length of 20, in 
which the p-value is provided. AVL denotes the average loss. 

** denotes the significant at the 5% level. 
*** denotes the significant at the 1% level. 

Table 5 
Out-of-sample average losses and goodness-of-fit tests (alpha = 0.05).   

UBD LBD GUS  

AVL VaR ES AVL VaR ES AVL VaR ES 

GARCH-N  2.528  0.730  0.512  2.223  0.000  0.002  2.189  0.597  0.963 
GARCH-SKT  2.511  0.856  0.539  2.210  0.978  0.003  2.184  0.572  0.785 
GARCH-EDF  2.512  0.684  0.404  2.211  0.872  0.001  2.187  0.171  0.640 
GARCH-FZ  2.509  0.690  0.404  2.240  0.000  0.001  2.181  0.308  0.661 
DCS  2.607  0.004  0.001  2.227  0.008  0.000  2.189  0.047  0.153 
Hybrid  2.612  0.004  0.001  2.227  0.000  0.000  2.213  0.186  0.455 

Notes: The left panel of this table presents the average losses, using the FZ0 loss function, for estimated carbon and lower bound carbon return series, 
over the out-of-sample period from March 1, 2017 to February 28, 2020, for six different forecasting models. The lowest average loss (AVL) in each 
column is highlighted in bold. The goodness of fit tests in this table present p-values of the VaR and ES forecasts, respectively. 
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VaR and ES for the bitcoin network. Specifically, by using the normal distribution, SKT, and empirical distribution based on the 
estimated standardized residuals, we run the VaR and ES forecasts based on the parametric dynamic models. The semiparametric 
dynamic VaR and ES forecasts are given by the DCS, GARCH-FZ, and hybrid models. 

Table 5 shows the average loss of the model, with the lowest values presented in bold. The first-choice models for the VaR and ES 
forecasts are the parametric GARCH-FZ model for upper bound and best-guess carbon returns and the GARCH-SKT model for lower 
bound carbon returns. As Christoffersen (1998) and Engle and Manganelli (2004a) demonstrate, we employ the dynamic quantile test 
by Engle and Manganelli (2004a) to select the best-fitted models in our study. Therefore, to evaluate VaR and ES forecasts, we provide 
the p-value of the goodness-of-fit test according to the average loss in Table 5. However, for the lower bound ES, all models fail the 
goodness-of-fit test. 

To confirm our results, we present Diebold–Mariano (DM) t statistics for the loss difference of the upper bound, lower bound, and 
best-guess VaR and ES by using the “row model minus column model” calculation presented in Table 6. The negative values suggest the 
outperformance of the column models. The DM t statistics confirm the results provided in Table 5. Even though the value is 
nonsignificant in most cases, the GARCH-FZ and GARCH-SKT models slightly outperform all competing models for the corresponding 
VaR and ES forecasts. 

Finally, we provide the fitted 5% daily VaR and ES in Fig. 2 by selecting the best-performing models—the semiparametric GARCH- 
FZ model for upper bound and best-guess carbon returns and parametric GARCH-SKT model for lower bound carbon returns. The lower 
bound VaR and ES are more volatile than the other twos, with more extreme values (Fig. 2). Because the parametric GARCH-SKT model 
incorporates the mean-reverting process in the mean equation, no trend is observed in volatility and cyclicity. By contrast, the mean 
equation in the GARCH-FZ model does not include a constant, and the upper bound and best-guess VaR and ES exhibit clear trends of 
upward volatility and cyclicity over time. In this sense, the semiparametric model captures not only the volatility clustering in the EUA 
(Zhu et al., 2014) but also the cyclicity in electricity consumption (Li et al., 2019). However, we also observe significantly different 
patterns of the VaR and ES for the different types of models. Therefore, individually considering the upper bound, lower bound, and 
best-guess CBECI can fully and dynamically capture the range of the VaR and ES. 

4.3. Climate VaR and ES 

After identifying the VaR and ES forecasts with the best fit, we further incorporate the economic loss caused by the Bitcoin network 
to calculate the climate VaR and ES. The artificial carbon price on the Bitcoin network generates a negative externality for the 
environment and should be negative along with its market cap. Therefore, our estimated VaR and ES should be added back to the 
negative market cap of carbon intensity in the Bitcoin network. Because we use annual electricity consumption to estimate the Bitcoin 
network’s carbon footprint, we transform the real-time VaR and ES to annual estimates by multiplying them by the square root of 252. 
Fig. 3 illustrates the dynamic annualized 95th percentile climate VaR and ES of the Bitcoin network. Obviously, the absolute values of 
the climate VaR and ES have increased considerably since Bitcoin was first introduced, reaching their peaks on July 8, 2019, for the 

Table 6 
Diebold-Mariano t-statistics on average out-of-sample loss differences (alpha = 0.05).   

GHN GHT GHE GHF FZF HYR 

Panel A: UBD 
GARCH-N   2.560  2.945 − 1.248  2.067 − 1.306 
GARCH-SKT − 2.560   − 0.346 − 1.478  0.383 − 1.530 
GARCH-EDF − 2.945  0.346  − 1.510  0.440 − 1.564 
GARCH-FZ − 2.067  − 0.383  − 0.440   − 1.486 − 1.537 
DCS 1.248  1.478  1.510 1.486  − 4.034 
Hybrid 1.306  1.530  1.564 4.034  1.537   

Panel B: LBD 
GARCH-N   1.312  1.660 − 0.099  − 1.726 − 0.088 
GARCH-SKT − 1.312   − 0.067 − 0.454  − 2.728 − 0.442 
GARCH-EDF − 1.660  0.067  − 0.458  − 2.959 − 0.446 
GARCH-FZ 1.726  2.728  2.959   0.303 0.311 
DCS 0.099  0.454  0.458 − 0.303  0.369 
Hybrid 0.088  0.442  0.446 − 0.369  − 0.311   

Panel C: GUS 
GARCH-N   0.623  0.269 0.028  0.443 − 0.699 
GARCH-SKT − 0.623   − 0.295 − 0.236  0.154 − 0.717 
GARCH-EDF − 0.269  0.295  − 0.116  0.360 − 0.797 
GARCH-FZ − 0.443  − 0.154  − 0.360   − 0.334 − 0.711 
DCS − 0.028  0.236  0.116 0.334  − 0.880 
Hybrid 0.699  0.717  0.797 0.880  0.711  

Notes: This table presents t-statistics from Diebold-Mariano tests comparing the average losses, using the FZ0 loss function, over the out-of-sample 
period from January March 1, 2017 to February 28, 2020, for six different forecasting models. A positive value indicates that the row model has 
higher average loss than the column model. Values greater than 1.96 in absolute value indicate that the average loss different is significantly different 
from zero at the 95% confidence level. Values along the main diagonal are all identically zero and are omitted for interpretability. 
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Fig. 2. The plots of 5th percentile VaR and ES for upper bound (up), lower bound (middle), and guess (bottom) artificial carbon returns. Red line 
denotes VaR and black line denotes ES. The sample period is from December 2, 2014 to February 28, 2020. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. The plots of 95th percentile climate VaR and ES for upper bound (up), lower bound (middle), and guess (bottom) artificial carbon market. 
Red line denotes VaR and black line denotes ES. The sample period is from December 2, 2014 to February 28, 2020. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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upper bound, February 13, 2020, for the lower bound, and February 19, 2020, for the best-guess. Even though the values of the 
annualized climate VaR and ES change, they tend to increase with time. 

Table 7 reports the descriptive statistics of the 95th percentile climate VaR and ES. The historical average climate VaR ranges from 
226.805 to 1156.420 million euros, with the best-guess value of 470.880 million euros. The historical average climate ES ranges from 
275.961 to 1443.510 million euros, with the best-guess value of 576.048 million euros. Moreover, the upper bound loss of the climate 
VaR and ES may be approximately 8.04 and 10.37 billion euros. The estimated best-guess values of the climate VaR and ES prior to our 
analysis may have been 3.222 and 4.221 billion euros, respectively. All these values of the climate VaR and ES assume the carbon 
emission allowance to be correctly priced. However, many studies suggest that it is often underpriced (Hájek et al., 2019; Palao and 
Pardo, 2012), implying that the climate VaR and ES on the Bitcoin market are much higher. For comparison, the carbon footprint of the 
Bitcoin network is similar to the GDP of New Zealand (206 billion USD or 170 billion euros) in 2018. Following the calculation method 
employed by Dietz et al. (2016), the 95th percentile climate VaR of New Zealand is approximately 8.1 billion euros, which is similar to 
the upper bound value of the 95th percentile climate VaR and ES of the Bitcoin market. For accurate climate VaR and ES forecasts, the 
upper bound electricity consumption should be employed as an indicator of the carbon footprint of the Bitcoin network. However, its 
value is at least double the estimated best-guess value of the 95th percentile climate VaR and ES. 

Following the same procedures, we estimate the 99th percentile climate VaR and ES of the Bitcoin market. Specifically, only 
parametric models are selected as the models with the best fit, namely the GARCH-EDF model for upper bound and best-guess carbon 
returns and the GARCH-SKT model for lower bound carbon returns. The dynamics of the 99th and 95th percentile climate VaR and ES 
are similar (Fig. 4). Similarly, we observe a sharp increase in the climate VaR and ES of the Bitcoin network after 2017 due to the 
increase in the price of not only the carbon allowance but also Bitcoin. Hayes (2019) provides evidence that the cost of Bitcoin mining 
is highly consistent with its market price. Because of the limited supply of bitcoins, the energy consumption and computation power 
required to obtain additional bitcoins increase sharply (Krause and Tolaymat, 2018). Specifically, as the hashrate increases due to the 
increasing participation of miners and increasing difficulty of computations, obtaining an additional bitcoin increases the negative 
environmental externality. Although the current price of Bitcoin has already surpassed US$10,000, it is associated with a considerably 
high climate change risk. 

Furthermore, we analyze the descriptive statistics of 99th percentile climate VaR and ES (Table 8). The historical average climate 
VaR ranges from 296.864 to 1603.137 million euros (best-guess value, 664.238 million euros). The historical average climate ES 
ranges from 296.864 to 1960.730 million euros (best-guess value, 807.011 million euros). The upper bound loss of the climate VaR and 
ES may be approximately 11.33 and 14.15 billion euros. The estimated best-guess values of climate VaR and ES may have been 8.8 and 
11.08 billion euros, respectively. Compared with the 99th percentile climate VaR of New Zealand, which is 28.66 billion euros, the 
climate VaR of the Bitcoin market is much lower. Therefore, according to the results of the current analysis, our climate VaR and ES 
may be underestimated. In other words, the negative environmental externality of the Bitcoin network based on the current carbon 
price is not sufficient to reflect the environmental cost (Hong et al, 2019). Carbon tax on the Bitcoin network and other cryptocurrency 
blockchains may be an effective method for hindering global warming (Hájek et al., 2019; Zhou et al., 2018) 

Overall, unlike traditional financial products, Bitcoin is a blockchain-based product. Hence, Bitcoin mining and trading can be 
conducted anywhere with an internet connection and sufficient hardware and electrical power, all of which cause considerable energy 
consumption and environmental impact. With the increasing marginal cost of Bitcoin mining, the negative environmental externality 
also increases. As revealed in our analysis, the climate VaR and ES has reached a historical high around 2020, indicating the urgency of 
recognizing the environmental impact of Bitcoin. Moreover, from the low-carbon investment perspective, Bitcoin may not be a suitable 
consideration for investors. 

5. Conclusion 

In this study, to explore the negative environmental externality of the Bitcoin network, we develop an artificial carbon footprint of 
the Bitcoin network by employing CBECI along with the weighted average CIBN estimated by Stoll et al. (2019). Furthermore, we 
employ the price of carbon emission allowance in EU EST and evaluate the economic value of this externality by estimating the climate 
VaR and ES. To make our results more robust, following Patton et al. (2019), we compare the parametric and semiparametric models to 
forecast the climate VaR and ES. Overall, we discover that the semiparametric models always perform well in forecasting the climate 

Table 7 
The descriptive statistics of 95th percentile climate VaR and ES.   

UBD_ VaR UBD _ ES LBD_ VaR LBD_ ES GUS_ VaR GUS_ ES 

Mean 1156.420 1443.510 226.805 275.961 470.880 576.048 
Median 252.382 315.513 27.498 32.828 66.009 81.673 
Minimum 12.036 14.024 5.035 5.959 11.051 13.304 
Maximum 8042.863 10372.540 2468.769 3332.980 3953.783 5212.581 
Current 6191.163 8091.634 1258.126 1586.598 3222.931 4221.154 
Std. Dev. 1591.986 2019.150 320.376 398.181 652.510 810.862 
Skewness 1.850 1.956 2.021 2.275 1.762 1.947 
Kurtosis 6.584 7.159 8.818 11.076 6.632 8.005 
Observations 1369 1369 1369 1369 1369 1369 

Notes: The unit is million euros. The sample period is from December 2, 2014 to Feb 28, 2020. 
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Fig. 4. The plots of 99th percentile climate VaR and ES for upper bound (up), lower bound (middle), and guess (bottom) artificial carbon market. 
Red line denotes VaR and black line denotes ES. The sample period is from December 2, 2014 to February 28, 2020. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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VaR and ES of the Bitcoin market, especially for the 99th percentile climate VaR and ES. 
From a comparison of estimations made using our best-fitted models based on the findings of Dietz et al. (2016), we determine the 

95th percentile climate VaR and ES to be 8.04 and 10.37 billion euros, which is quiet similar to the 95th percentile climate VaR of a 
country’s GDP, such as that of New Zealand, with a similar carbon footprint. By contrast, the best-guess and lower bound 95th 
percentile climate VaR and ES remain unable to capture the real economic value of carbon emissions. The 99th percentile climate VaR 
and ES values are still much lower than the 99th percentile climate VaR of New Zealand’s GDP. Overall, regardless of whether 
parametric or semiparametric models are used, estimates of the climate VaR and ES are still far from the real economic cost of carbon 
emissions in the Bitcoin network. Still, our analysis provides new insight into the economic relationship between the Bitcoin network 
and environmental concerns and highlights the critical negative environmental externality of the Bitcoin network. 

Our results have at least two policy implications. From an environmental perspective, carbon tax should be levied on Bitcoin mining 
as well as on each transaction on the blockchain. Moreover, the EU EST should improve the efficiency of pricing the carbon emission 
allowance to hinder global warming by incorporating the cryptocurrency industry. Therefore, a broader carbon tax system should be 
implemented to penalize the negative environmental impact of carbon-intensive industries, such as the cryptocurrency industry. A tax 
refund system incorporating the EU EST should also be developed. Accordingly, the carbon emission allowance can be an exchangeable 
or exit mechanism for the carbon tax 

From a financial perspective, derivatives should be developed to hedge environmental risk, and the coverage of some weather 
derivatives should be extended to include the cryptocurrency market. Further integration of the carbon and cryptocurrency markets 
through the development of carbon-linked derivatives is necessary. Importantly, the idea of low-carbon investments should be pro-
moted. Accurate values of the climate VaR and ES along with a more efficient and accurate methodology for estimating and forecasting 
the VaR and ES remain unattained and should be investigated in future research. 
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Carbon Footprint: Sectoral Emissions From MSCI ESG Research LLC

Portfolio : 6101 Currency : USD

June 6 2024 23 of 31

Financed Carbon Emission (S1+S2) by Sector Sector Weight to Financed Carbon Emissions (S1+S2)

Portfolio Benchmark Active

Materials 964.5 0 0.0%
Utilities 430.0 0 0.0%
Energy 212.6 0 0.0%
Industrials 50.3 0 0.0%
Consumer Staples 42.7 0 0.0%
Communication Services 28.9 0 0.0%
Consumer Discretionary 19.2 0 0.0%
Financials 14.2 0 0.0%
Health Care 11.9 0 0.0%
Information Technology 11.2 0 0.0%
Real Estate 4.7 0 0.0%
Total 103.8 0 0.0%

The sector table shows the comparison of the portfolio sector emissions (Scope 1 
+ Scope 2) to those of the benchmark. The key denotes the magnitude of the 
emissions in each sector with green denoting lower emissions, and red denoting 
higher emissions in that sector.

The column chart shows the composition by sector of the portfolio and 
benchmarks by market capitalization to financed carbon emissions. This highlights 
that dominant sectors, in terms of emissions, tend to be Energy, Utilities, and 
Materials.

Sectoral Contribution to Financed Carbon Emissions (S1+S2)

Portfolio Benchmark

Communication Services 1.3% 0.0%
Consumer Discretionary 1.3% 0.0%
Consumer Staples 1.4% 0.0%
Energy 10.1% 0.0%
Financials 3.2% 0.0%
Health Care 0.3% 0.0%
Industrials 3.2% 0.0%
Information Technology 0.2% 0.0%
Materials 45.0% 0.0%
Real Estate 1.5% 0.0%
Utilities 32.4% 0.0%

The pie chart shows the composition by each sector's contribution to financed carbon emissions. This highlights that dominant sectors, in terms of emissions, tend to be 
Energy, Utilities, and Materials.
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carbon emissions. This highlights that dominant sectors, in terms of emissions, 
tend to be Energy, Utilities, and Materials.
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Portfolio

The sector table shows the comparison of the portfolio sector emissions 
(Scope 1 + Scope 2) to those of the benchmark. The key denotes the 
magnitude of the emissions in each sector with green denoting lower 
emissions, and red denoting higher emissions in that sector.
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Carbon Footprint: Emission Trends & Profile From MSCI ESG Research LLC

Portfolio : 6101 Currency : USD

June 6 2024 24 of 31

Weighted Average Carbon Intensity of Current Holdings Over Time

* Current refers to the selected analysis date and provides additional context to the analysis. For example, the figure shown could either be in the past at a specific point 
in time, or the present date if not specified.

Change across 5 years = -25.3% Change since baseline NZ year of 2019 = -21.4%
The chart above shows the change over time of the weighted average carbon intensity (WACI) of the 
portfolio and benchmark based on the portfolio and benchmark constituents and weights at the date 
of analysis. This analysis is intended to provide an understanding of how the companies in the 
portfolio have decarbonized over time, as investors increasingly monitor decarbonization to support 
climate commitments such as net zero.

Please note that the analysis does not take into account changes in constituents over this time 
period. Please see the Financed Emissions Attribution Report for a more sophisticated analysis.

The portfolio and benchmark WACI are illustrated with blue and grey circles, respectively.

Portfolio coverage of this metric is also provided which provides contextual information. For 
example, a lower WACI figure may be related to lower coverage of that metric in a certain year. There 
can be lower coverage due to companies’ reporting cycles and take time in different regions around 
the world.

Also provided is a % change of the WACI over a 5 year period and a % change compared to the 
commonly used net zero baseline year of 2019 for further monitoring and reporting.

Contribution of Emissions by Scope

The chart above illustrates the emissions profile of the portfolio 
compared with the benchmark, denoting the share between 
Scopes 1, 2 and 3 emissions.

Please note Scope 3 here utilizes a combination of estimated 
and reported emissions data.

Carbon Emission: Trends and Profile

Weighted Average Carbon Intensity of Current Holdings Over Time Contribution of Emissions by Scope
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The chart above illustrates the emissions profile of the portfolio denoting the share 
between Scopes 1, 2, and 3 emissions. Please note Scope 3 here utilises a combination 
of estimated and reported emissions data.

The chart above shows change over time of the weighted average carbon intensity 
(WACI) of the portfolio constituents and weights at the date of analysis. This analysis 
is intended to provide an understanding of how the companies in the portfolio have 
decarbonised over time, as investors increasingly monitor decarbonisation to support 
climate commitments such as net zero.
The portfolio WACI is illustrated with blue circles. Please note that the analysis does not 
take into account changes in constituents over this time period.
Portfolio coverage of this metric is also provided which provides contextual information. 
For example, a lower WACI figure may be related to lower coverage of that metric in a 
certain year. There can be lower coverage due to companies’ reporting cycles and take 
time in different regions around the world.
Also provided is a % change of the WACI over a 5-year period and a % change 
compared to the commonly used net zero baseline year of 2019 for further monitoring 
and reporting.
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The chart above illustrates the emissions profile of the portfolio 
compared with the benchmark, denoting the share between 
Scopes 1, 2 and 3 emissions.

Please note Scope 3 here utilizes a combination of estimated 
and reported emissions data.
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Climate Scenario Analysis Summary From MSCI ESG Research LLC

Portfolio : 6101 Currency : USD

June 6 2024 9 of 31

Climate Value at Risk

Selected Scenario : 1.5°C NGFS Orderly

1.5°C 
NGFS 
Orderly

1.5° 
REMIND 

NGFS 
Orderly

1.5° 
REMIND 

NGFS 
Disorderly

2° 
REMIND 

NGFS 
Orderly

3° 
REMIND 

NGFS NDC

Portfolio Portfolio Portfolio Portfolio Portfolio

Policy Climate Var (Scope 1,2,3) -9.3% -9.3% -13.7% -3.7% -3.0%

Technology Opportunities Climate VaR 0.6% 0.6% 1.2% 0.2% 0.1%

Physical Climate VaR Aggressive -5.2% -5.2% -5.2% -6.6% -8.9%

Aggregated Climate VaR -13.9% -13.9% -17.7% -10.1% -11.9%

Physical Climate Value at Risk Detail

Selected Scenario : Aggressive

Chronic Risks (0.5° global grid) 

Extreme 
Heat

-0.7%

Extreme
Cold

0.0%

Wind
Gusts

0.0%

Heavy
 Snowfall

0.0%

Heavy 
Precipitation

-0.1%

Acute Risk (high res) 

Tropical
Cyclones

-0.2%

Coastal
Flooding

-4.3%

Fluvial
Flooding

-0.2%

River Low
Flow

-6.3%

Wildfires
 

0.0%

 

Aggregate Physical Climate VaR

-5.2%

Climate VaR Portfolio Coverage Summary

Portfolio

Policy Climate VaR (Scope 1,2,3) 18.7%

Technology Opportunities Climate VaR 15.7%

Physical Climate VaR 17.9%

Climate Scenario Analysis Summary From MSCI ESG Research LLC

Portfolio : 6101 Currency : USD

June 6 2024 9 of 31

Climate Value at Risk

Selected Scenario : 1.5°C NGFS Orderly

1.5°C 
NGFS 
Orderly

1.5° 
REMIND 

NGFS 
Orderly

1.5° 
REMIND 

NGFS 
Disorderly

2° 
REMIND 

NGFS 
Orderly

3° 
REMIND 

NGFS NDC

Portfolio Portfolio Portfolio Portfolio Portfolio

Policy Climate Var (Scope 1,2,3) -9.3% -9.3% -13.7% -3.7% -3.0%

Technology Opportunities Climate VaR 0.6% 0.6% 1.2% 0.2% 0.1%

Physical Climate VaR Aggressive -5.2% -5.2% -5.2% -6.6% -8.9%

Aggregated Climate VaR -13.9% -13.9% -17.7% -10.1% -11.9%

Physical Climate Value at Risk Detail

Selected Scenario : Aggressive

Chronic Risks (0.5° global grid) 

Extreme 
Heat

-0.7%

Extreme
Cold

0.0%

Wind
Gusts

0.0%

Heavy
 Snowfall

0.0%

Heavy 
Precipitation

-0.1%

Acute Risk (high res) 

Tropical
Cyclones

-0.2%

Coastal
Flooding

-4.3%

Fluvial
Flooding

-0.2%

River Low
Flow

-6.3%

Wildfires
 

0.0%

 

Aggregate Physical Climate VaR

-5.2%

Climate VaR Portfolio Coverage Summary

Portfolio

Policy Climate VaR (Scope 1,2,3) 18.7%

Technology Opportunities Climate VaR 15.7%

Physical Climate VaR 17.9%

Climate Scenario Analysis

Climate Value at Risk

Physical Climate Value at Risk Detail

Portfolio Portfolio Portfolio Portfolio Portfolio

Aggregate Physical Climate VaR

Climate Scenario Analysis Summary From MSCI ESG Research LLC

Portfolio : 6101 Currency : USD

June 6 2024 9 of 31

Climate Value at Risk

Selected Scenario : 1.5°C NGFS Orderly

1.5°C 
NGFS 
Orderly

1.5° 
REMIND 

NGFS 
Orderly

1.5° 
REMIND 

NGFS 
Disorderly

2° 
REMIND 

NGFS 
Orderly

3° 
REMIND 

NGFS NDC

Portfolio Portfolio Portfolio Portfolio Portfolio

Policy Climate Var (Scope 1,2,3) -9.3% -9.3% -13.7% -3.7% -3.0%

Technology Opportunities Climate VaR 0.6% 0.6% 1.2% 0.2% 0.1%

Physical Climate VaR Aggressive -5.2% -5.2% -5.2% -6.6% -8.9%

Aggregated Climate VaR -13.9% -13.9% -17.7% -10.1% -11.9%

Physical Climate Value at Risk Detail

Selected Scenario : Aggressive

Chronic Risks (0.5° global grid) 

Extreme 
Heat

-0.7%

Extreme
Cold

0.0%

Wind
Gusts

0.0%

Heavy
 Snowfall

0.0%

Heavy 
Precipitation

-0.1%

Acute Risk (high res) 

Tropical
Cyclones

-0.2%

Coastal
Flooding

-4.3%

Fluvial
Flooding

-0.2%

River Low
Flow

-6.3%

Wildfires
 

0.0%

 

Aggregate Physical Climate VaR

-5.2%

Climate VaR Portfolio Coverage Summary

Portfolio

Policy Climate VaR (Scope 1,2,3) 18.7%

Technology Opportunities Climate VaR 15.7%

Physical Climate VaR 17.9%

Climate VaR Portfolio Coverage Summary

Portfolio

The table provides information on the most exposed companies to physical risk exposure 
in the portfolio such as extreme weather events in the selected physical risk scenario. 
However, physical risks can be both positive and negative and be expressed in both 
positive and negative values. MSCI currently models ten hazards including extreme heat 
and cold, coastal and river flooding, wildfires as well as wind gusts and precipitation. 
Physical changes can be event-driven (‘acute’) or longer-term in nature (‘chronic’).
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Top 10 Physical Risk Climate VaR Companies

Security
Physical Risk Climate  

VaR Contribution
Primary Physical  
Risk Hazard

MSCI Climate Value at Risk From MSCI ESG Research LLC

Portfolio : 6101 Currency : USD

June 6 2024 28 of 31

Top 10 Physical Risk Climate VaR Companies

Security Physical Risk Climate VaR Contribution Primary Physical Risk Hazard

SUN HUNG KAI PROPERTIES LIMITED -0.66% Coastal Flooding

NEW CHINA LIFE INSURANCE COMPANY LTD. -0.44% Coastal Flooding

Link Real Estate Investment Trust -0.27% Coastal Flooding

WHARF REAL ESTATE INVESTMENT COMPANY LIMITED -0.22% Coastal Flooding

SEGRO PUBLIC LIMITED COMPANY -0.13% Coastal Flooding

Mitsui Fudosan Co., Ltd. -0.09% Coastal Flooding

CK ASSET HOLDINGS LIMITED -0.09% Coastal Flooding

Sino Land Company Limited -0.09% Coastal Flooding

SEMPRA -0.06% Coastal Flooding

Mitsubishi Estate Company, Limited -0.06% Coastal Flooding

 

The table provides information on the most exposed companies to physical risk exposure in the portfolio such as extreme weather events in the selected physical risk 
scenario. However, physical risks can be both positive and negative and be expressed in both positive and negative values. MSCI currently models ten hazards including 
extreme heat and cold, coastal and river flooding, wildfires as well as wind gusts and precipitation. Physical changes can be event-driven ('acute') or longer-term in nature 
('chronic')
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MSCI Climate Value at Risk From MSCI ESG Research LLC

Portfolio : 6101 Currency : USD

June 6 2024 26 of 31

Top 10 Aggregated Climate VaR Risk Contributors

Security Aggregated Policy Risk 
Climate VaR

Technology Opportunities 
Climate VaR

Physical Risk Climate 
VaR

Aggregated Climate 
VaR Weight(%) Climate VaR Risk 

Contribution

SUN HUNG KAI PROPERTIES LIMITED -1.98% 0.20% -100.00% -100.00% 0.12% -0.12%
SASOL LIMITED -100.00% 0.21% -7.44% -100.00% 0.11% -0.11%
EXXARO RESOURCES LIMITED -100.00% 0.80% -2.15% -100.00% 0.10% -0.10%
NEW CHINA LIFE INSURANCE COMPANY LTD. -6.36% 0.00% -30.64% -37.00% 0.26% -0.10%
GLENCORE PLC -61.18% 0.00% -4.25% -65.43% 0.11% -0.07%
SAPPI LIMITED -100.00% 0.00% -7.69% -100.00% 0.05% -0.05%
Link Real Estate Investment Trust -0.50% 0.02% -44.73% -45.20% 0.11% -0.05%
DUKE ENERGY CORPORATION -64.79% 1.56% -1.63% -64.86% 0.07% -0.05%
THE SOUTHERN COMPANY -63.65% 2.34% -1.22% -62.53% 0.07% -0.05%
CHENIERE ENERGY, INC. -100.00% 0.00% -1.25% -100.00% 0.04% -0.04%

 

The table provides an overview of the companies with the highest negative Aggregated Climate VaR contribution in the portfolio. The position weight of each individual 
security in the portfolio is multiplied by the Aggregated Climate VaR to establish the Climate VaR risk contribution of the portfolio. Aggregated Climate VaR in this chart is 
the sum of Policy Risk from Direct GHG Emissions (Scope 1) Climate VaR, Technology Opportunities Climate VaR and Physical Climate VaR for the selected scenario. 
Climate VaR numbers are calculated at the security level, i.e. 2 securities associated with the same issuer could have different Climate VaR.

Climate Value at Risk

Top 10 Aggregated Climate VaR Risk Contributors

Security

Aggregated 
Policy Risk

Climate VaR

Technology 
Opportunities

Climate VaR
Physical Risk
 Climate VaR

Aggregated
 Climate VaR Weight (%)

Climate VaR Risk
Contribution

The table provides an overview of the companies with the highest negative Aggregated Climate VaR contribution in the portfolio. The position weight of each individual security in 
the portfolio is multiplied by the Aggregated Climate VaR to establish the Climate VaR risk contribution of the portfolio. Aggregated Climate VaR in this chart is the sum of Policy 
Risk from Direct GHG Emissions (Scope 1) Climate VaR, Technology Opportunities Climate VaR and Physical Climate VaR for the selected scenario.
Climate VaR numbers are calculated at the security level, i.e. 2 securities associated with the same issuer could have different Climate VaR.
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Climate Value at RiskSovereign Bond Climate VaR: Portfolio Overview From MSCI ESG Research LLC

Portfolio : 6101 Currency : USD

June 6 2024 20 of 31

Portfolio Weights of Largest Contributor Countries by Time-to-maturity

Country/Duration 0 - 1Y 1Y - 5Y 5Y - 10Y 10Y - 20Y 20Y+ Total

Brazil 0.00% 0.00% 18.32% 0.00% 0.00% 18.32%
Mexico 0.00% 0.00% 2.40% 12.44% 0.00% 14.84%
Indonesia 0.00% 0.00% 0.00% 14.75% 0.00% 14.75%
Poland 0.00% 0.00% 9.30% 0.00% 0.00% 9.30%
Romania 0.00% 6.75% 0.00% 1.14% 0.00% 7.89%
South Africa 0.00% 1.14% 0.00% 0.00% 6.50% 7.64%
Hungary 0.00% 5.00% 1.90% 0.00% 0.00% 6.90%
Japan 6.52% 0.00% 0.00% 0.00% 0.00% 6.52%
Singapore 6.43% 0.00% 0.00% 0.00% 0.00% 6.43%
Germany 1.55% 2.05% 0.00% 0.43% 0.26% 4.29%
Total 14.49% 14.93% 31.92% 28.76% 6.76% 96.87%

Total includes all other country buckets not listed in the above list.

Portfolio Level Sovereign Climate VaR Results

Portfolio Benchmark Active

1p5C NGFS Orderly -1.21% 0.00% -1.21%
1p5C NGFS Disorderly 0.69% 0.00% 0.69%
2C NGFS Orderly 0.43% 0.00% 0.43%
2C NGFS Disorderly 0.07% 0.00% 0.07%
3C NGFS Current Policies 0.95% 0.00% 0.95%
3C NGFS 0.08% 0.00% 0.08%
Coverage 0.59% 0.00% 0.59%

 

Coverage is 0.59% for the portfolio, 0.00% for the benchmark.

Coverage here denotes total portfolio coverage across all asset classes, not only the 
sovereign portion of the portfolio. The coverage metrics presented in this report are 
computed in the context of the entire long-only side of the portfolio - no weight adjustments 
are performed for the respective scopes of corporate or sovereign exposures.

Understanding Sovereign Climate VaR

Sovereign Bond Climate VaR is designed to provide a forward-looking and return-based valuation assessment to measure climate related risks in a sovereign bond 
investment portfolio. The fully quantitative model offers insights into how climate change could affect sovereign bond valuations through the use of a stress testing 
framework.

It estimates the change in the sovereign yield curve when market expectations move from a climate-agnostic baseline expectation to any other climate scenario. Yield 
curve changes are then used to stress test the value of local-currency sovereign bonds.

The model produces two types of outputs: the potential impact of climate change and economic decarbonization on implied yield curves and sovereign bond valuations.
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MSCI Implied Temperature Rise Company Analysis Implied Temperature Rise
 

The Implied Temperature Rise (ITR) 
metric provides an indication of how well 
public companies align with global 
temperature goals. Expressed in degrees 
Celsius, it is an intuitive,forward-looking 
metric that shows how a company aligns 
with the ambitions of the Paris 
Agreement -which is to keep a global 
temperature rise this century well below 
2°C above pre-industrial levels and to 
pursue efforts to limit the temperature 
increase even further to 1.5°C. The 
portfolio-level Implied Temperature Rise 
compares the sum of "owned" projected 
GHG emissions against the sum of 
"owned" carbon budgets for the 
underlying fund holdings. The portfolio's 
total estimated carbon budget over- /
undershoot is then converted to a degree 
of temperature rise (°C) using the TCRE. 
The allocation base used to define 
ownership is Enterprise Value including 
Cash (EVIC) in order to enable the 
analysis of equity and corporate bond 
portfolios.

Aggregated Implied Temperature Rise

Portfolio: 2.7°C Benchmark: 0
 

Implied Temperature Rise: Companies with Highest Temperature Alignment

Company Name Weight Implied Temperature Rise

SASOL LIMITED 0.1% 10.0°C
EXXARO RESOURCES LIMITED 0.1% 10.0°C
KfW 0.1% 10.0°C
CELANESE US HOLDINGS LLC 0.0% 10.0°C
NTPC LIMITED 0.0% 10.0°C
LINDE PUBLIC LIMITED COMPANY 0.0% 10.0°C
THE TATA POWER COMPANY LIMITED 0.0% 10.0°C
OCCIDENTAL PETROLEUM CORPORATION 0.0% 10.0°C
MARRIOTT INTERNATIONAL, INC. 0.0% 10.0°C
Carnival Corporation 0.0% 10.0°C

 

Implied Temperature Rise: Companies with Lowest Temperature Alignment

Company Name Weight Implied Temperature Rise

BRITISH AMERICAN TOBACCO P.L.C. 0.2% 1.3°C
BIG YELLOW GROUP PLC 0.1% 1.3°C
NATIONAL GRID PLC 0.0% 1.3°C
ANGLOGOLD ASHANTI PLC 0.0% 1.3°C
Eversource Energy 0.0% 1.3°C
PACIFIC GAS AND ELECTRIC COMPANY 0.0% 1.3°C
NOVO NORDISK A/S 0.0% 1.3°C
CONSOLIDATED EDISON, INC. 0.0% 1.3°C
EDISON INTERNATIONAL 0.0% 1.3°C
Hannover Rueck SE 0.0% 1.3°C

MSCI Implied Temperature Rise From MSCI ESG Research LLC

Portfolio : 6101 Currency : USD

June 6 2024 18 of 31

MSCI Implied Temperature Rise Company Analysis Implied Temperature Rise
 

The Implied Temperature Rise (ITR) 
metric provides an indication of how well 
public companies align with global 
temperature goals. Expressed in degrees 
Celsius, it is an intuitive,forward-looking 
metric that shows how a company aligns 
with the ambitions of the Paris 
Agreement -which is to keep a global 
temperature rise this century well below 
2°C above pre-industrial levels and to 
pursue efforts to limit the temperature 
increase even further to 1.5°C. The 
portfolio-level Implied Temperature Rise 
compares the sum of "owned" projected 
GHG emissions against the sum of 
"owned" carbon budgets for the 
underlying fund holdings. The portfolio's 
total estimated carbon budget over- /
undershoot is then converted to a degree 
of temperature rise (°C) using the TCRE. 
The allocation base used to define 
ownership is Enterprise Value including 
Cash (EVIC) in order to enable the 
analysis of equity and corporate bond 
portfolios.

Aggregated Implied Temperature Rise

Portfolio: 2.7°C Benchmark: 0
 

Implied Temperature Rise: Companies with Highest Temperature Alignment

Company Name Weight Implied Temperature Rise

SASOL LIMITED 0.1% 10.0°C
EXXARO RESOURCES LIMITED 0.1% 10.0°C
KfW 0.1% 10.0°C
CELANESE US HOLDINGS LLC 0.0% 10.0°C
NTPC LIMITED 0.0% 10.0°C
LINDE PUBLIC LIMITED COMPANY 0.0% 10.0°C
THE TATA POWER COMPANY LIMITED 0.0% 10.0°C
OCCIDENTAL PETROLEUM CORPORATION 0.0% 10.0°C
MARRIOTT INTERNATIONAL, INC. 0.0% 10.0°C
Carnival Corporation 0.0% 10.0°C

 

Implied Temperature Rise: Companies with Lowest Temperature Alignment

Company Name Weight Implied Temperature Rise

BRITISH AMERICAN TOBACCO P.L.C. 0.2% 1.3°C
BIG YELLOW GROUP PLC 0.1% 1.3°C
NATIONAL GRID PLC 0.0% 1.3°C
ANGLOGOLD ASHANTI PLC 0.0% 1.3°C
Eversource Energy 0.0% 1.3°C
PACIFIC GAS AND ELECTRIC COMPANY 0.0% 1.3°C
NOVO NORDISK A/S 0.0% 1.3°C
CONSOLIDATED EDISON, INC. 0.0% 1.3°C
EDISON INTERNATIONAL 0.0% 1.3°C
Hannover Rueck SE 0.0% 1.3°C

MSCI Implied Temperature Rise From MSCI ESG Research LLC

Portfolio : 6101 Currency : USD

June 6 2024 18 of 31

MSCI Implied Temperature Rise Company Analysis Implied Temperature Rise
 

The Implied Temperature Rise (ITR) 
metric provides an indication of how well 
public companies align with global 
temperature goals. Expressed in degrees 
Celsius, it is an intuitive,forward-looking 
metric that shows how a company aligns 
with the ambitions of the Paris 
Agreement -which is to keep a global 
temperature rise this century well below 
2°C above pre-industrial levels and to 
pursue efforts to limit the temperature 
increase even further to 1.5°C. The 
portfolio-level Implied Temperature Rise 
compares the sum of "owned" projected 
GHG emissions against the sum of 
"owned" carbon budgets for the 
underlying fund holdings. The portfolio's 
total estimated carbon budget over- /
undershoot is then converted to a degree 
of temperature rise (°C) using the TCRE. 
The allocation base used to define 
ownership is Enterprise Value including 
Cash (EVIC) in order to enable the 
analysis of equity and corporate bond 
portfolios.

Aggregated Implied Temperature Rise

Portfolio: 2.7°C Benchmark: 0
 

Implied Temperature Rise: Companies with Highest Temperature Alignment

Company Name Weight Implied Temperature Rise

SASOL LIMITED 0.1% 10.0°C
EXXARO RESOURCES LIMITED 0.1% 10.0°C
KfW 0.1% 10.0°C
CELANESE US HOLDINGS LLC 0.0% 10.0°C
NTPC LIMITED 0.0% 10.0°C
LINDE PUBLIC LIMITED COMPANY 0.0% 10.0°C
THE TATA POWER COMPANY LIMITED 0.0% 10.0°C
OCCIDENTAL PETROLEUM CORPORATION 0.0% 10.0°C
MARRIOTT INTERNATIONAL, INC. 0.0% 10.0°C
Carnival Corporation 0.0% 10.0°C

 

Implied Temperature Rise: Companies with Lowest Temperature Alignment

Company Name Weight Implied Temperature Rise

BRITISH AMERICAN TOBACCO P.L.C. 0.2% 1.3°C
BIG YELLOW GROUP PLC 0.1% 1.3°C
NATIONAL GRID PLC 0.0% 1.3°C
ANGLOGOLD ASHANTI PLC 0.0% 1.3°C
Eversource Energy 0.0% 1.3°C
PACIFIC GAS AND ELECTRIC COMPANY 0.0% 1.3°C
NOVO NORDISK A/S 0.0% 1.3°C
CONSOLIDATED EDISON, INC. 0.0% 1.3°C
EDISON INTERNATIONAL 0.0% 1.3°C
Hannover Rueck SE 0.0% 1.3°C

Implied Temperature Rise

MSCI Implied Temperature Rise Company Analysis

Aggregated Implied Temperature Rise

Implied Temperature Rise: Companies with Highest Temperature Alignment

Company Name Weight
Implied 

Temperature Rise

Implied Temperature Rise: Companies with Lowest Temperature Alignment

Company Name Weight
Implied 

Temperature Rise

Implied Temperature Rise
The Implied Temperature Rise (ITR) metric 
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companies align with global temperature 
goals. Expressed in degrees Celsius, it is an 
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company aligns with the ambitions of the 
Paris Agreement – which is to keep a global 
temperature rise this century well below 2°C 
above pre-industrial levels and to pursue efforts 
to limit the temperature increase even further to 
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Rise compares the sum of “owned” projected 
GHG emissions against the sum of “owned” 
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